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Abstract

In a rapidly changing crypto landscape, it is unclear whether anti-money laundering policies
accomplish their intended goals or are inexpedient activities. We measure criminal responses to
recent enforcement actions in crypto by tracing illicit &ows throughout %.’( TB of Ethereum
blockchain transactions. First, the "$""OFAC sanctions against the Tornado Cash mixer resulted
in a ($% decline in monthly volume, ## basis points in incremental obfuscation costs, twice the
probability of detection, and fewer interactions with both Western and less-regulated exchanges.
Hackers and related &ows switched to swaps and bridges, which are more traceable. Second,
OFAC sanctions against other addresses are uncommon but have resulted in over ’$$,$$$ BTC
and ’%%,$$$ ETH stuck on-chain. Third, over )’.#* billion in Tether in ’,+,- addresses is frozen
on-chain, causing criminals tomove their related account activities tomore costly services. Fourth,
o.shore exchange &ows from Tornado Cash only decline signi/cantly after Binance and OKX
reach settlements with the U.S. DOJ, indicating that multiple forms of enforcement are often
necessary. Overall, our results indicate that sanctions, particularly those regarding services, have
been e.ective in seizing funds, moving funds to more traceable and seizable places, and raising
laundering costs. Nevertheless, sanctions, freezes, and bans are relatively rare as a fraction of total
criminal activity, and overseas exchanges still handle substantial non-sanctioned criminal &ows.
Our /ndings indicate speci/c areas for improvement that can help guide recent crypto policy and
legislative proposals.
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I. Introduction

Whereas the traditional banking sector haswell-established anti-money laundering (AML) procedures,

policies and protocols in the crypto arena are relatively nascent and in &ux. There is a general lack of

understanding regarding whether crypto money laundering policies are enforced, useful, and e.ective

in accomplishing their goals. What are the economic magnitudes of their impact? Through which

channels do they operate? What substitutes emerge in response? Recent changes in the regulatory and

enforcement environment provide an empirical testing ground to examine the implementation and

e!cacy of di.erent forms of anti-money laundering enforcement protocols and their impact.

Money laundering is the process of moving and concealing the origins of illicit proceeds to inte-

grate them into the legitimate /nancial system and enable their unrestricted use. Anti-money laun-

dering laws are deeply ingrained in the modern /nancial system, particularly following September

’’, "$$’, as controls to reduce terrorist /nancing and other criminal capital &ows. The theoretical

motivation from the Becker (’,(-) crime model indicates that in order to deter crime, one needs to

increase the probability of being caught and the /ne when punished. The goal of AML policies and

their enforcement is to increase the probability of detecting both criminals and money launderers,

and to punish to the extent that it results in the forfeiture and possible /ne of funds (Ferwerda, "$$,).

Evaluating the e.ectiveness of aspects of the AML framework is di!cult because of the limited

availability of reliable and detailed data. Chong and Lopez-De-Silanes ("$’%) outline two contrasting

views on whether AML laws matter: A) the conventional view, which holds that AML laws reduce

crime by blunting their pro/tability, and B) the skeptics view, which emphasize that e.orts are best

spent on targeting the root sources of crime and not on regulating money services.’ A /rm’s reputa-

tional risk may also serve as a su!cient deterrent to money-laundering activities. Levi, Reuter, and

Halliday ("$’+) detail how there is little reliable data to evaluate AML e.orts and that regulation is

largely unguided by data analysis. Within the cryptocurrency environment, we compile a large amount

’Consistent with this view, Cuéllar ("$$") argues that there is a tenuous relationship between AML regulations and
reducing crime, despite the large costs of implementation, reduction in privacy, and negative externalities such as reducing
access to the banking system. Pol ("$"$) argues that there are few outcomemetrics tomeasure AML e.ectiveness, criminals
keep up to ,,.,% percent of criminal proceeds, and that the policies actually enable all forms of serious criminal activity.
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of detailed data on illicit funds that is typically private within banks and not available for researchers

or large-scale outside analysis.

In this paper, we empirically evaluate the e.ectiveness of crypto AML policies and procedures by

utilizing the many regulatory and court orders as shocks. We /rst compile a large dataset of "%(,,%-

crypto addresses used in phishing attacks, romance scams, fake projects, contract exploits, imperson-

ation, airdrops, fake returns, SIM swaps, hacks, and ransomware, and use these addresses to map the

money laundering ecosystem. Using Google Cloud BigQuery, we process %.’( TB of Ethereum trans-

action and event data to trace the &ow of illicit funds through the blockchain. We then examine how

centralized and decentralized exchanges (DEXs) interact with traced addresses before and after gov-

ernment sanctions. Speci/cally, we use the traced network to analyze two sets of policies: policies

targeting services, including the high-pro/le "$"" Tornado Cash ban and DOJ settlements with ex-

changes, and policies targeting individual users, including OFAC sanctions, stablecoin seizures, and

the )10, 000 reporting threshold.

Our /ndings show that Tornado Cash, an Ethereum mixer that obfuscates the origin of funds,

handles considerable criminal &ows from more sophisticated cyber-criminal gangs, with the Lazarus

Group fromNorth Korea being the largest identi/ed user. Before its August "$""U.S. sanction, West-

ern centralized exchanges received #.,,% of Tornado Cash out&ows on average, a proportion that

declined to ".’*% in the twelve months following the ban, representing a *(."$% reduction. Flows

to overseas centralized exchanges did not decline immediately after the ban but began to fall by the

end of "$"#, after which bridges became the dominant destination for Tornado Cash out&ows. For

funds that do reach exchanges post-ban, they take, on average, $.’+ additional hops and incur ## basis

points in incremental transaction costs from obfuscation techniques, compared to a pre-ban baseline

of approximately %$ basis points, as shown in a di.erence-in-di.erence design. The probability of

correctly matching transactions from the largest mixer user during a given week also doubles after

the ban (from ’$.’%% before the sanctions to "’.’$% afterward), indicating that the decline in volume

renders the mixer less useful for obfuscation. Additionally, the reduction in transaction volumes is
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more pronounced for Western exchanges relative to overseas exchanges." DeFi swaps and bridges take

&ows directly after leaving Tornado Cash, indicating that there is likely no concern for DEXs to reject

their transaction.

Additionally, we analyze the &ow of hackers over the pre-ban and banning period, and /nd that

in a di.erence-in-di.erence design, their &ows to Tornado Cash decrease by #$%. Rather than using

other mixers, they typically move money through DeFi swaps and bridges, outlets that obfuscate trans-

actions for standard tracing tools, but are nevertheless traceable. Overall, the ban on Tornado Cash

seems e.ective in that it increases transaction costs on criminal &ows, and hackers switch to traceable

methods where it is at least potentially possible to freeze funds.

Another potentially important enforcement mechanism is the freezing of criminal assets. We ex-

amine all addresses on theOFAC sanctions list, which includes #-$ Bitcoin addresses and ($ Ethereum

addresses. Although sanctions are often imposed too late and after funds have left addresses, sanctions

nonetheless prove e.ective in trapping some assets on-chain. We /nd that approximately ’,%,$$$ Bit-

coins and *"$,$$$ ETH have passed through these sanctioned addresses, with %’."-% of the Bitcoin

and #(.,$% of the Ethereum &ows remain seemingly stuck on their respective blockchains.

Perhaps more importantly, certain law enforcement agencies and courts have been successful at

requesting Tether to freeze assets. In total, we /nd that over )’.#* billion Tether and ),#.’" million

USDC have been frozen. Of this, )($-.(% million is frozen in addresses that appear in the traced

criminal network. We also analyze other related addresses to the criminal freeze and /nd that their

share of &ows to DeFi services after freezes increases by approximately "%%, presumably to obfuscate

their &ows. This indicates that, in addition to costing the criminals their funds, seizures can impose

additional costs on criminals in the form of costlier and less regulated services.

We then consider whether DOJ settlements with exchanges deter behavior. We /rst revisit the

Tornado Cash sanctions and observe that out&ows from Tornado Cash to overseas exchanges did not

immediately decline following the sanctions. However, a reduction in sanctioned &ows to Binance

becomes evident only after the exchange reached settlement agreements during our sample period.

"We useWestern exchanges to refer to Coinbase, Crypto.com, Gemini, and Kraken because they are some of the largest
exchanges that can be accessed from North America and Europe over the "$"$ to "$"% sample period.
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We also look at all tainted deposit addresses at exchanges and consider whether the Binance and OKX

shares of tainted &ows decline after their settlements. In a di.erence-in-di.erences design, we /nd

that Binance’s tainted in&owdeclines ’-% in the year after the announcement, withmuch of the volume

substituting instead to other exchanges like OKX and bridges. However, after the OKX settlement

with the DOJ, tainted deposit addresses also see a sharp negative decline in in&ows. Nevertheless,

when we look at a broader set of criminal activity, including scamming, phishing attacks, romance

scams, fake projects, contract exploits, impersonation, airdrops, fake returns, SIM swaps, hacks, and

ransomware, we /nd that exchanges still handle considerable dirty money &ows after the activity.

Additionally, we examine the recent Bybit hack by North Korea and /nd that the majority of &ows

use the Thorchain bridge tomove to Bitcoin and are storing themajority of these funds across multiple

di.erent wallets.

Finally, we compare the deposit patterns of criminal and other users and /nd that tainted de-

posit addresses disproportionately use round-number amounts, being about ’"–’# percentage points

more likely to use deposit amounts exactly divisible by )%$$ or )’,$$$. Tainted users show additional

bunching in round-number bins just under the )’$,$$$ Suspicious Activity Report (SAR) threshold,

at Western (but not overseas) exchanges. Thus, criminals do appear to have some concern for this re-

porting threshold, though it is not clear if this threshold is an e.ective mechanism to detect criminal

behavior.

Overall, it appears that sanctions, seizures, and /nes have been e.ective tools for freezing funds,

keeping funds trapped on-chain, moving funds to more transparent avenues, and increasing costs for

criminals. Our /ndings suggest practical areas for industry improvement, enforcement, and policy to

deter money laundering. First, more aggressive seizures and bans seem warranted. Policies targeting

services (e.g., mixers and exchanges) appear more e.ective than actions against users; Actions against

individual users are used relatively infrequently and often too late, only after funds are o.-ramped.

Second, self-policing appears ine.ective given the wide range of practices by crypto exchanges in han-

dling criminal &ows. Only after settling federal charges did overseas exchanges signi/cantly decrease

their &ows in OFAC sanctioned addresses. Additionally, overseas exchanges still handle signi/cant
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tainted crypto &ows. Third, more attention should be paid to DeFi. Criminals do not appear to be

concerned that these services will reject their transactions, and criminals are much less cautious with

money coming out of DeFi services, suggesting that they believe the money is mostly viewed as clean

money. Fourth, many large centralized exchanges need to do more monitoring of funds and have more

rigorous KYC and KYT procedures. Otherwise, criminal &ows can substitute money laundering des-

tinations by using exchanges with more lax AML regulations.

Lastly, we speak to ongoing policy debates. On April +, "$"%, a DOJ order by Deputy Attorney

General Todd Blanche stated that the DOJ “will no longer target virtual currency exchanges, mixing

and tumbling services, and o0ine wallets for the acts of their end users or unwitting violations of

regulations,” but will instead hold accountable individuals who cause harm to digital asset investors

or use digital assets for various forms of organized crime. Our results show that banning mixers is

e.ective in pushing illicit /nancial &ows to transparent places and empowering exchanges to monitor

their &ows. The DOJ’s goal of pursuing organized crime, including foreign actors, may be substantially

impeded without targeting mixing and tumbling services. Additionally, the judge issuing the recent

ruling that OFAC did not have the authority to ban code noted that “OFAC’s concerns with illicit for-

eign actors laundering funds are undeniably legitimate. Perhaps Congress will update IEEPA, enacted

during the Carter Administration, to target modern technologies like crypto-mixing software.” Our

/ndings suggest that Congress should consider such an update. Additionally, in the U.S., the GENIUS

Act was signed on July ’-, "$"%, which requires stablecoin issuers to comply with U.S. law enforce-

ment requests for asset seizure.# Our analysis shows that seizers can be an e.ective tool and that this

condition for stablecoin issuers is important; otherwise, criminal &ows may move to stablecoin issuers

who do not allow freezes.

Our paper relates to two main literatures. First, in addition to the literature outlined above, we

further contribute to the literature on crime and money laundering. El Siwi ("$’-) notes that recog-

nizing “money is the lifeblood of organized crime” led to the adoption of the AML regime in Italy.

Mirenda, Mocetti, and Rizzica ("$"") show how organized crime utilizes cash and shell companies to

#See Congress website for more details about the the Guiding and Establishing National Innovation for U.S. Stable-
coins Act of "$"%, or GENIUS Act.

%
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obfuscate transactions entering the banking system. Moore, Clayton, and Anderson ("$$,) survey the

economic structure of online crime and recommendmore private data sharing and police enforcement

focused on online gangs.* Chong and Lopez-De-Silanes ("$’%) /nd that money laundering regulations

are associated with lower levels of proxies for money laundering across countries. Fracassi and Lee

("$"%) examine cross-country di.erences in AML laws and their e.ectiveness. Campbell-Verduyn

("$’-), Al-Tawil ("$""), and Wronka ("$"#) overview money-laundering laws and procedures, the po-

tential challenges of application to cryptocurrencies, and the variation of policies across countries.

Levi ("$’%) surveys the literature on how organized crime is /nanced and notes that what is known

has been primarily limited to prosecuted case records. Our paper focuses on understanding the e!cacy

of money-laundering methods in the crypto space, where criminal activities can actually be partially

measured and the regulatory landscape is rapidly evolving.

Second, there is a literature examining darkmarket activity in the crypto space. Meiklejohn, Poma-

role, Jordan, Levchenko, McCoy, Voelker, and Savage ("$’#), Sokolov ("$"’), and Amiran, Jørgensen,

and Rabetti ("$"") examine the role of Bitcoin in the Silk Road ("$’’-"$’#), ransomware, and ter-

rorism /nancing. Foley, Karlsen, and Putnin, 1 ("$’,) /nd that *(% of non-exchange-related Bitcoin

activity from January #, "$$, to April "$’+ is associated with darknet websites from "+million Bitcoin

users. Makarov and Schoar ("$"’) /nd only )% billion in dark-market activities, Bitcoin mixers, and

other criminal activities in "$"$.% Gri!n and Mei ("$"%) map the &ows of pig butchering scams by

tracing the &ows and showing how criminal &ows are entering centralized exchanges and how these

exchanges are allowing inducement payments to potential victims. Cong, Harvey, Rabetti, and Wu

("$"#b) show that *# ransomware gangs carried out ",(,$ attacks from May "$’, to July "$"’. Cong,

Grauer, Rabetti, and Updegrave ("$"#a) provide a useful overview as well as concrete examples of var-

*Leukfeldt, Kleemans, Kruisbergen, and Roks ("$’,) /nd that technological knowledge for cybercrime in the Nether-
lands is often gained through a smaller set of technically skilled enablers in online marketplaces. Draca and Machin ("$’%)
survey a growing literature on the economic incentives for crime. In terms of externalities of policies, Agca, Slutzky, and
Zeume ("$"$) studies how AML enforcement impacts lending by U.S. banks. Dirty money also distort macroeconomic
capital allocations (Tanzi, ’,,(; Quirk, ’,,().

%Chainalysis ("$"*) also provides a survey and examples of various types of criminal activity and calculates a total of
)"*." billion in "$"# through wallets directly identi/ed with various identi/ed for illegal activity though they note that
their procedure undercounts. They seemingly do not count &ows not other closely related addresses.

(



ious crypto investment scams, Ponzi schemes, ransomware, money laundering, and dark markets.( We

provide the /rst examination of AML laws. We also extend the literature by utilizing a comprehensive

database of various types of criminal activity, and the analysis also leads to a fuller understanding of

which laws might be e.ective and how criminals evade detection.

II. Data, Background, and Methodology

This paper develops a grouping of data sets into a uni/ed framework for following illicit funds. We do

this by collecting data on transaction &ows in Bitcoin and Ethereum. Transaction-level data is then

enrichedwith attribution labels to assign addresses and&ows to speci/c actors. Tracingmethodologies

further organize these transactions so that we can consistently follow speci/c funds that start at an

illicit address to track their &ows to subsequent destinations. This section describes the process of

developing our datasets, the background of crypto AML policies, and the tracing methodology.

A. Data

We primarily use two types of data: blockchain transaction data and attribution data. Blockchain

transaction data is sourced from the Bitcoin and Ethereum blockchains. Importantly, the /elds include

the blockchain address of the sender and receiver, which allows us to construct paths of &ows between

addresses. We study both Bitcoin and Ethereum, with slightly greater emphasis on Ethereum because

that is where Tornado Cash, a high-pro/le mixer, exists. We analyze the Bitcoin blockchain for an

analysis of additional OFAC addresses, the Bybit hack, and for additional robustness. We use data

from coingecko.com on end-of-day cryptocurrency prices to convert Ethereum and Bitcoin values to

dollars.+

Beyond routine cryptocurrency transfers, transactions can also be invoked by specialized functions.

We process data emitted from common functions, which allows us to follow funds that are swapped

(This literature also /ts within a larger literature of other types of nefarious trading activity in crypto, including price
manipulation (Gandal, Hamrick, Moore, and Oberman, "$’-; Gri!n and Shams, "$"$), pump-and-dump schemes (Li,
Shin, and Wang ("$"%), Hamrick, Rouhi, Mukherjee, Feder, Gandal, Moore, and Vasek ("$"’), and Phua, Sang, Wei, and
Yu ("$"")), insider trading (Félez-Viñas, Johnson, and Putnins, "$""), and wash trading (Pennec, Fiedler, and Ante, "$"’;
Cong et al., "$"#b) as brie&y surveyed by Gri!n and Kruger ("$"*).

+When converting cryptocurrency value to dollars, we assume prices for the stablecoins Tether, USDC, and DAI are
always )’. This subset of currencies constitutes the vast majority of cryptocurrencies we see used in our sample.
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or bridged. Swapping is typically when an address uses a service such as a decentralized exchange to

change one type of cryptocurrency to another on the same blockchain. Bridging is when an address

deposits tokens into a service on one blockchain and receives that amount on another blockchain, net

of any fees. We process data on swaps and bridges to further follow relevant funds. On BigQuery, the

total Ethereum blockchain amounts to over % TB of data.-

We use a rich set of sources of attribute data. First, we use data from online sources, such as

blockchain.com and etherscan.io, to label addresses that belong to known entities. We focus on ser-

vice providers such as centralized exchanges, decentralized exchanges, bridges, or mixers. Second, we

collect all sanctioned addresses by OFAC, as well as all Ethereum-based addresses where the stablecoin

issuers of Tether and USDC have seized assets. Third, we use data on known illegal actors reported

by various data collectors. These are mainly reported by victims, discovered by law enforcement, or

/led in lawsuits. After dropping reports of insu!cient detail to categorize the type of scam, we use

"%(,,%- reported addresses, #+,++# for Bitcoin, and "’,,’-% for Ethereum. The single largest source

of addresses is chainabuse.com, a leading reporting platform where victims and other users describe

hacks and scams. To standardize labels across sources, we /rst hand-label *"% victim reports and /ne-

tune a GPT-*o-mini large language model (LLM) on this set. We then apply the /ne-tuned LLMmodel

to assign scam categories to the remaining reports, ensuring consistent labeling across sources. Table ’

presents summary statistics on reported addresses, tabulated by scam category and blockchain., We

also received data on ’",%%* suspicious addresses collected as part of an online publication about pig

butchering scams from the United States Institute of Peace (USIP).’$

Overall, we /nd that addresses reported as part of stolen funds have the largest total in&ow, fol-

lowed by pig butchering scams, illicit actors, and contract exploits. In Table ", we present summary

statistics for each scam and the averages. We count the &ows into these addresses from January "$"$

-The Ethereum blockchain data consists of two primary tables on Google Cloud BigQuery: the transactions table (".%,
TB), which records transaction-level details such as sender, recipient, ETH value transferred, and contract interactions;
and the logs table (".%+ TB), which stores all smart contract event logs, including token transfers, swaps, and other contract
events, emitted during transaction execution.

,The Internet Appendix includes additional details about the distribution of and nature of these reports.
’$We thank Jan Santiago (a!liated with PIDCO) and Raymond Hantho (Chainbrium) for sharing their data. This

data was collected primarily from either interfacing with victims or probing scammer operations.

-



to January "$"%. The total in&ow to these addresses is a total of )%".(’ billion, with )"’.*( billion

from Bitcoin and )#’.’% billion in Ethereum. These beginning addresses should not be used to scope

the total amount of activity since these incoming amounts do not capture unreported scam addresses.

B. Crypto AML Policy Background

After the terrorist attacks on September ’’, "$$’, the U.S. extended the existing anti-money laun-

dering framework of the Bank Secrecy Act and increased cooperation across countries through new

international initiatives from the Financial Action Task Force (FATF). Anti-money laundering laws

and enforcement may be the main means of deterring activity in important settings such as terrorism

and crimes committed by foreign nationals, where authorities may not have the ability to apprehend

criminals in non-cooperative nations. Many of the basic principles are being questioned by a crypto

industry born as an alternative /nancial system that is growing in size and political in&uence.

Cryptocurrency’s appeal seemingly lies in its potential as an alternative /nancial system free from

regulation. However, to interact with the global banking system, centralized crypto exchanges must

authenticate the identities of new users through anti-money laundering and know your customer

(AML/KYC) processes. Most exchanges purport to monitor transactions through know your trans-

action (KYT) policies to avoid receiving funds from known criminals. Since investors need trust in

order to deploy capital and for meaningful investments to occur, the crypto ecosystem also has an

incentive to root out bad actors as it seeks to be an alternative means of raising capital for legitimate

entrepreneurial activity. The trade-o. is that monitoring can be costly, reputational risk may be less

pertinent in the crypto world, and lax monitoring may lead to more transactions and fees for the

crypto intermediaries.

The regulatory and enforcement environment is in &ux. On August -, "$"", the U.S. Treasury

Department O!ce of Foreign Assets Control (OFAC) sanctioned Tornado Cash in response to its

use by hackers sponsored by the Democratic People’s Republic of Korea (DPRK) and thus prohibited

the US /nancial system from accepting related funds. A lawsuit challenging the sanctions, with the

/nancial backing of large players in the crypto industry, argued that such a precedent would put undue
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responsibility on developers to prevent criminals from using their services.’’ The ban was lifted on

November "(, "$"*, when an appellate judge ruled that Tornado Cash’s immutable smart contracts

are not “property” and thus OFAC did not have authority to ban their use.’",’# On a separate track, the

U.S. Department of Justice (DOJ) prosecuted and /ned large international crypto exchanges such as

Binance (November "’, "$"#) and OKX (February "*, "$"%) for their lax AML procedures. As part of

their settlements, the exchanges agreed to more rigorous monitoring procedures and DOJ oversight.

We use these shocks to study how users and exchanges respond to AML enforcement actions.

C. Methodology

We use blockchain data to construct a network of related addresses and analyze their characteristics

in order to understand how the network responds to AML regulations. In this subsection, we describe

the methodology used to identify related addresses, with tracing serving as the primary tool, and gas

and deposit address clustering utilized.

C.! Crypto Tracing

Tracing organizes transaction-level data into a framework that delineates the path of transaction &ows

of subsequent addresses. Tracing algorithms are an area of growing academic research (Anderson,

Shumailov, andAhmed, "$’-; Möser andNarayanan, "$’,; Tironsakkul, Maarek, Eross, and Just, "$"")

and are commonly used by law enforcement, through service providers like Chainalysis and TRMLabs,

to follow capital &ows. We apply a suite of bulk tracing algorithms used and more fully described by

Gri!n and Mei ("$"%) in the context of pig butchering scams.’* When tracing a given address, the

/rst step is to collect all in&ows. If out&ows exist, then the tracer follows out&ows to the next address.

The goal is to follow tainted out&ows to their end destination. Importantly, if tainted out&ow funds

’’As reported by Reuters and discussed in a Coinbase blog post.
’"More information can be found in this court ruling.
’#When the Fifth Circuit ruled, Paul Grewal, Chief Legal O!cer at Coinbase, remarked that: “Privacy wins. Today

the Fifth Circuit held that U.S. Treasury’s sanctions against Tornado Cash smart contracts are unlawful. This is a historic
win for crypto and all who cares about defending liberty. Coinbase is proud to have helped lead this important challenge.”
More information can be found here.

’*These tracing algorithms have been developed and maintained by Integra FEC. The algorithms are essentially a
program with a series of steps to follow crypto fund &ows to stopping points such as centralized exchange hot wallets.
There are separate algorithms per blockchain for tracing funds forward and tracing funds backward.

’$

https://www.reuters.com/business/finance/us-scraps-sanctions-tornado-cash-crypto-mixer-accused-laundering-north-korea-2025-03-21
https://www.coinbase.com/blog/defending-privacy-in-crypto
https://assets.ctfassets.net/c5bd0wqjc7v0/70EasapqSxH1kLInf3IQrd/1a1ce21cdc6bc903921f45018cce3821/Tornado_Cash.pdf
https://news.bitcoin.com/historic-win-for-crypto-court-strikes-down-treasurys-overreach/


are commingled in a downstream address that contains &ows from other sources, then the forensic

researchermust choose how to follow subsequent out&ows. We follow commingled funds on a “/rst-in-

/rst-out” (FIFO) basis, a well-established and accurate process for following speci/c fund transfers in

cryptocurrency transaction-level data (Anderson, Shumailov, and Ahmed, "$’-). By using tracing, we

seek to only follow &ows that are highly likely to be controlled by reported criminal addresses, instead

of implicating all downstream addresses and their respective funds. Consequently, traced funds will

always follow strictly less than the initial in&ow to the originating source.

We trace the entire network of reported criminal &ows as described in the Data subsection. This

results in a network of paths from reported origins to their subsequent end destinations if they leave

the blockchain. Additionally, for mixers, we trace &ows that leave tainted services. For example, in the

next section, we trace all TornadoCash out&ows. For services like Uniswap,Wrapped ETH, and bridge

contracts, we only follow speci/c funds that are linked to traced transactions. Lastly, we backtrace or

follow in&ows to a tainted address back to their originating source.

C." Gas and Deposit Address Clustering

In addition to tracing, we use two clustering methods to extend our network to /nd addresses that

are highly likely to be related to an address of interest: gas clustering and deposit address clustering

heuristics. Gas clustering arises when two addresses may share the same “funding” address, or the /rst

instance of receiving a small amount of Ether, the native currency of Ethereum. The rationale is that

all addresses need Ether because blockchain transaction costs can only be paid in Ether. Therefore,

we associate the /rst funder as a way to link potentially related addresses. This idea is incorporated

in services like Etherscan, the most popular service to view Ethereum transactions, where they display

the /rst gas funder for every wallet. Deposit address clustering arises when two exchange deposit

addresses receive funds from the same sender. The rationale is that deposit addresses are sensitive

information like a bank account number, and therefore, if one sender transfers funds to two di.erent

deposit addresses, then it is likely that the two deposit addresses are linked, as discussed in Victor
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("$"$).’% Common gas funders and deposit address senders can then be used to link one address of

interest to another in their nearby network. We drop any gas funders or senders that have more than

",$$$ transactions, and drop any contracts to avoid linking clusters through services. We use gas

funding to de/ne related addresses to serve as a “treated” group for stablecoin seizures and deposit

address clustering to measure in&ows to potentially tainted addresses after exchanges settle with the

U.S. Department of Justice.

III. Tornado Cash Sanctions

Tornado Cash is the most well-knownmixer on Ethereum and the most widely used money laundering

service by illicit actors, particularly in hacks and smart contract exploits.’( We begin by examining

how other crypto actors interact with this service, focusing on &ows into and out of Tornado Cash to

better understand howboth centralized and decentralized exchanges respond to transactions involving

this well-known service. On August -, "$"", the U.S. Treasury Department sanctioned Tornado Cash,

prohibiting the U.S. /nancial system from accepting related funds. This ban was lifted on November

"(, "$"*, when a U.S. judge ruled that smart contracts or computer code could not be sanctioned, as

they do not constitute the property of a foreign national or entity. We use this regulatory timeline to

study how crypto activity interfaces with Tornado Cash across two main periods: before the ban and

during the ban. We also show some time-series analysis after the ban, though there is limited history

and more reduced activity. We begin with an overview of aggregate fund &ows, then address three key

questions: (’) Do user &ows to Tornado Cash decline following the sanctions? (") Has criminal in&ow

to Tornado Cash decreased? (#) Are centralized exchanges e.ective in enforcing sanctions?

A. Overview of Flows

We /rst provide an overview of Tornado Cash &ows. Panel A of Figure ’ shows the type of identi/able

addresses that use Tornado Cash. To keep the exercise manageable, we sample the ",%$$ largest nodes

’%On most centralized exchanges, each deposit address is linked to a speci/c customer account, and users can often
generate new deposit addresses at no cost. These addresses are sensitive because if tainted funds are traced to one, law
enforcement can subpoena the exchange, which may then be legally obligated to disclose the customer’s identity.

’(Figure IA.# shows destinations cross-tabulated by crime type.
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within the Tornado Cash network. To the left of the center Tornado Cash node, we notice that many

of the addresses that remit funds to Tornado Cash are recognizable hacks and illicit organizations,

including the Lazarus Group. Among paths entering Tornado Cash, many are intertwined in more

complicated networks, while outgoing paths are more discernible. Users appear to funnel more money

from decentralized exchanges (i.e., Uniswap, ’inch) than from centralized exchanges. Further, Tornado

Cashwithdrawals are commonly funneled back toDeFi within one hop. Funds alsomove to centralized

exchanges. If exchanges enforced sanctions, then we should expect this &ow to cease after sanctions.

B. Do User Flows to Tornado Cash Decline Following the Sanctions?

Figure " shows the time series of all &ows to Tornado Cash, along with totals traced from reported

criminal &ows. The August "$"" ban seems to have been e.ective in reducing volume to the mixer.

Before the ban, Tornado Cash was handling more than ’$$,$$$ ETH ()*$$ million) per month, but

after the ban by October "$"", volume was less than *$,$$$ ()%$ million) per month, or a more than

($% decline. Interestingly, the mixer becomes more attractive for criminals with a large volume, as it

is easier to plausibly deny that the out&ows one receives are di.erent from the input transactions. The

volume in the mixer stays low until the ban is lifted. Nevertheless, the volume post-ban does not rise

to pre-ban levels.

We also plot the weekly tainted criminal address activity as a percentage of the total activity, as

shown by the red line in Figure ". The total &ows vary widely, but at times show a sizable fraction of

the &ows due to criminal activity. In the six months following the sanction, an average of "(.*,% of

in&ows to Tornado Cash are due to criminal &ows, more than double the ’’.+,% observed in the six

months prior. This percentage rose further in "$"*, reaching an average of *,.("% between March and

October. The decline in late "$"* is likely more of a by-product of our data reporting since reported

criminal addresses are gathered with a considerable lag, as previously discussed. Nevertheless, the

numbers are likely understated because our sample likely does not capture the entirety of criminal

activity. Further, criminal &ows are coming from sources that either cannot be or which we have not

previously traced, including Tornado Cash itself, bridges, and the Wrapped Ether contract. When
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one examines the total &ows into Tornado Cash as a fraction of the total &ows for which there could

be attribution, the percentage of the &ows that originates from criminal activity jumps considerably.

Of the identi/ed criminal &ows to Tornado Cash, Figure IA.( plots the top %$ individual senders

featuring the North Korean Lazarus Group as /rst.

C. Is Tornado Cash Less Anonymous Following the Sanctions?

AlthoughTornadoCash is designed to sever the link between deposits andwithdrawals, when liquidity

is low, large &ows may be more detectable. We investigate how the ban on Tornado Cash a.ected this

aspect of anonymity by estimating, for each week, the probability that a one-ETH withdrawal can

be matched to the largest depositor. Perfect attribution is inherently di!cult given Tornado Cash’s

core function of obfuscating transaction &ows, so we estimate expected withdrawals by spreading each

depositor’s in&ows across future days according to a declining schedule.

For every depositor, we /rst observe the daily amount entering Tornado Cash. We predict ex-

pected out&ows by distributing each depositor’s daily in&ows into future daily withdrawals using a

declining schedule modeled as a Pareto decay function, f(!) = (1 + !
ω )

→ε, where ω = 0.3534 and

ε = 30 days.’+ This declining function assumes that each depositor withdraws a larger fraction of

their deposited funds shortly after making the deposit, with the fraction declining progressively for

withdrawals made in later periods. By applying this withdrawal projection to each individual depos-

itor’s daily in&ows, we obtain predicted daily withdrawal amounts for each depositor, which, when

aggregated across all depositors on a weekly basis, closelymatch the actual observed weekly withdrawal

totals.

Given that each predicted withdrawal is directly associated with the original depositor, we can

calculate the probability of correctly attributing a randomly selected one-ETH withdrawal during

week t to the top depositor as follows:

’+We test six di.erent withdrawal distributions and /nd that the Pareto distribution with parametersω = 0.3534 and
ε = 30 days provides predicted weekly withdrawal amounts that most closely match the actual Tornado Cash out&ows.
Additionally, Béres, Seres, Benczúr, andQuintyne-Collins ("$"’) document that approximately +$% of Tornado Cash users
of the linked deposit-withdraw pairs withdraw their funds within one day of deposit, consistent with the rapid withdrawal
schedule implied by our estimated distribution.
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Prob (Detection)t =
predicted withdrawals by the top depositor in t

predicted withdrawals in t
.

We calculate this probability weekly and report its ten-week rolling average, as shown by the blue line

in Figure ". Following the August "$"" U.S. Treasury sanctions, the average probability of matching

withdrawal transactions to the top depositor signi/cantly increased from ’$.’%% before the sanctions

to "’.’$% afterward. This increase primarily resulted from the sharp decline in total in&ows after the

sanctions, which caused the top depositor’s share to become more prominent. Note that there are ad-

ditional ways to track transactions, such as transaction reporting, timing di.erences, and transaction

clustering that our basic method does not employ, but further detailed analysis of certain transactions

might further increase the probability of detection. Thus, the sanction not only reduced Tornado

Cash’s overall usage but also made it less e.ective at obscuring fund source identities.

D. Has Criminal In"ow to Tornado Cash Declined?

We also /nd that most of the criminal in&ows into Tornado Cash are due to technically sophisticated

groups, contract exploits (such as those who exploit features of smart contracts or inject code to gain

access to wallets), stolen funds, or illicit actors, and not due to various sorts of scam activity, as seen in

Figure IA.#. We broadly label these criminals as “hackers” and, in this subsection, examine if hackers

change their behavior around the Tornado Cash sanctions.’-

We use data on %,-(+ unique hacker reports, identi/ed from addresses labeled as contract exploits,

stolen funds, or illicit actors. For each report in our dataset, we trace monthly &ows both to Tornado

Cash as well as to all other destinations on Ethereum. We construct a panel dataset where the unit of

observation is the &ows from each labeled hack, to each destination, per month.’, To formally test the

e.ect of the ban, we estimate a di.erence-in-di.erences (DiD) analysis on hacker &ows. We de/ne

the traced &ows going to Tornado Cash as the treatment group, while those going to all other services

’-We choose to focus on all hackers because this group has shown more technological sophistication and has used
Tornado Cash before the sanctions. Importantly, we cannot simply take a sample of each user that have a transaction
history with Tornado Cash because Tornado Cash users have a tendency to rotate wallets and avoid re-using the same
wallet in the future. Therefore, for many users, usage will mechanically decline after the /rst transaction.

’,This is a balanced panel in that if the reported hacker address i does not send any &ows to destination d in month t,
then we encode this as zero. The alternative would be to have an unbalanced panel with missing data.
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as the control group. Speci/cally, we estimate a regression of the form as follows:

log(1 + TaintedF lows)i,d,t =
∑

t ↑=June2022

ϑt → 1(Month = t)→ Tornadod

+ ϖ → Tornadod + µi + ϱt + ςi,d,t

where log(1+TaintedF lows)i,d,t is the log of one plus the amount of ETH traced from hacker report

i to destination d in month t, 1(Month = t) is an indicator for calendar month t, Tornadod is an

indicator equal to one if the destination is Tornado Cash, and zero otherwise, and µi and ϱt are hacker

report and month /xed e.ects, respectively. Figure # plots the estimated DiD coe!cients (ϑt), which

capture how the di.erence in in&ows between Tornado Cash and other destinations evolves in each

month compared to the baseline month. After the ban in August, we /nd that Tornado Cash usage

falls signi/cantly and remains approximately "(% lower for about a year.

E. Are Centralized Exchanges E!ective in Enforcing Sanctions?

After OFAC sanctioned Tornado Cash, money services businesses, including exchanges, were pro-

hibited from processing transactions associated with it. To assess whether exchange users responded

to these restrictions, we trace the &ows exiting Tornado Cash to determine whether users avoided

transferring those funds to centralized exchanges.

We identify and follow transaction paths from Tornado Cash to their eventual destinations. Fig-

ure * summarizes these paths using Sankey diagrams that visualize out&ows fromTornado Cash before

and after the August -, "$"" sanction. Flows originate from Tornado Cash, pass through intermediate

hops, and ultimately reach centralized exchanges in blue, decentralized exchanges in red, bridges in

purple, or wrapped ETH in gray. When &ows reach a decentralized exchange, we continue to follow

the funds in the new cryptocurrency to identify their /nal destinations. Before the ban, we observe

relatively large direct &ows to centralized exchanges. After the ban, we observe a sizable shift, with

fewer &ows reaching centralized exchanges and more funds routed through DEXs and bridges.

Figure % compares these paths in a time series. The bars in each sub-panel represent a monthly dis-

tribution that together displays the share of Tornado Cash out&ows that terminate inWestern central-
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ized exchanges (Panel A), overseas centralized exchanges (Panel B), and cross-chain bridges (Panel C).

Throughout the paper, we include Coinbase, Crypto.com, Gemini, and Kraken as Western exchanges,

primarily because these are the main exchanges that can be accessed from the US. All other exchanges

are included as overseas exchanges. Blue bars represent &ows that move directly from Tornado Cash to

the destination, while yellow bars indicate &ows that are /rst routed through a decentralized exchange

before reaching the /nal destination. The red line shows the average number of hops in each path, and

the blue line shows the average duration in days between the exit from Tornado Cash and arrival at

the destination.

We /nd that &ows to Western centralized exchanges decreased signi/cantly after the ban. The

average monthly share of out&ows to Western exchanges declined from #.,,% in the twelve months

before the ban to ".’*% in the twelve months after, a *(."$% reduction. This di.erence is statistically

signi/cant at the ’% level (t-statistic = #.%+, p-value = $.$$’+). The decline is driven speci/cally by the

reduction in direct &ows to Western centralized exchanges. The share of direct &ows fell from ".($%

to $.+-% over the same period, a (,.-$% reduction, which is statistically signi/cant at the $.’% level

(t-statistic = %.-(, p-value < $.$$’). The dollar-weighted share of paths that routed through a swap or

other DEX also increased, but it is not statistically signi/cant. Overseas centralized exchange &ow also

falls by the end of "$"#, and bridges become the dominant destination for Tornado Cash &ows. These

paths also have more costly characteristics in that they require more hops and are more likely to use a

DEX after the ban. Figure IA.% presents transaction costs before and after the sanctions were imposed,

split by Western and overseas exchanges. The transaction costs include transaction gas fees paid and

costs from swaps."$ While paths previously required an average of %$ basis points before the ban, the

paths that entered Western exchanges averaged ’.+’% (or ’+’ basis points) in transactions during the

ban. However, costs have only increased from #- to (( basis points for overseas exchanges.

Table # formally tests whether transfer paths toWestern centralized exchanges became more com-

plex and costly after the Tornado Cash ban, using a di.erence-in-di.erences regression that compares

Western exchanges (treatment group) and overseas exchanges (control group). Western exchanges are

"$For Tornado Cash paths, we follow swapped funds through Uniswap, ’inch, $x, /xed&oat, paraswap, and curve./,
which accounts for -%% of the Tornado Cash out&ows to DEXs.
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treated because the OFAC sanction is a U.S. action, and compliance is expected to be more strictly

enforced by exchanges with U.S. regulatory exposure. The regressions are estimated at the path-exit

level, where each path represents a sequence of transfers originating from a single withdrawal from

Tornado Cash that passes through one or more intermediate hops. Each path can have multiple ex-

its, where each exit is a distinct cash-out event to an exchange and is counted separately. We /nd

that the dollar-weighted average path that terminated in domestic exchanges used $.", more hops,

required about ’"$more days, and incurred between ++--+ basis points in additional transaction cost.

Users, therefore, are increasingly unwilling to take funds from Tornado Cash to Western centralized

exchanges. Those that do incur almost twice as much cost compared to transaction paths before the

ban.

More broadly, we also test whether paths from Tornado Cash incurred more cost to reach central-

ized exchanges, regardless of jurisdiction. We compare the characteristics of paths leaving Tornado

Cash and entering centralized exchanges to all tainted paths from the traced network to centralized

exchanges. The results presented in Table * show that Tornado Cash out&ows incurred $.’" more av-

erage hops, required ’#$ more days, and ## basis points in additional cost compared to other tainted

paths after the sanctions were imposed.

In summary, the study of Tornado Cash shows how various crypto players interact with a service

known to handle dirty money. We brie&y note that Tornado Cash handles considerable criminal &ows

from more sophisticated cyber-criminal gangs, and we explore this in more detail in Section +. The

main takeaway is that the Tornado Cash in&ow has declined after the sanctions. A large share of the

remaining &ows to Tornado Cash is associated with reported crimes. However, when considering

&ows of reported hackers, we /nd that criminal &ows to Tornado Cash have declined. Tornado Cash

out&ows increasingly do not enter centralized exchanges in a straightforward manner, and those that

do incur greater cost, likely in an e.ort to obfuscate the source of capital. Overall, the ban appears to

have reduced the e.ectiveness of the mixer.
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IV. OFAC Sanctions

The U.S. Treasury Department’s O!ce of Foreign Assets Control (OFAC) began listing digital cur-

rency addresses on its sanctions list in "$’-. These sanctions target individuals linked to international

crime varying widely, including North Korea’s Lazarus Group, Hezbollah, the Sinaloa cartel, etc. The

list further includes cryptocurrency exchanges and other cryptocurrency-related services associated

with illicit activity such as mixers or malware vendors. Once an address is sanctioned, U.S.-based enti-

ties are legally prohibited from transacting with it. In this section, we evaluate whether these sanctions

are e.ective at inhibiting the &ows of these designated addresses.

A. Are OFAC Sanctioned Addresses Able to Convert to Fiat?

There are "- days during which OFAC issued sanction orders, and these capture #-$ Bitcoin addresses

and ($ Ethereum addresses. As shown in Figure IA.+, these addresses belong to many di.erent illicit

actors spanning multiple criminal professions related to dark markets, terrorism, ransomware, mixers,

etc. The bulk of these sanctions occurred between "$"" and "$"*.

In Figure ( Panel A, we plot the sanctioned Bitcoin (left) and Ethereum (right) addresses. Each

bubble represents a sanctioned address, with the bubble size proportional to the address’s total lifetime

in&ow in dollars. The scatterplots illustrate sanction timing by plotting the address age at the time

of last transaction, or the number of days between an address’s /rst and last transactions (x-axis),

and age at the time of sanctions, or number of days between the /rst transaction and the sanction

date (y-axis). Addresses positioned directly on the *%-degree line were last used to transact exactly

on the sanction date, which means users halted all activity after sanctions. In contrast, if an address

is far above the *%-degree line, then sanctions are applied signi/cantly after the last active date. The

darker red shaded triangular regions highlight addresses that are sanctioned for more than one year

and for more than two years after the last transaction date. Bitcoin addresses exhibit signi/cant lags

in sanction timing. Speci/cally, -$.-$% of sanctioned Bitcoin addresses have no transactions after

they are sanctioned, but *+.*+% ceased activity more than one year before sanctions. On average, they

are sanctioned *$,.’# days after their last transaction. Ethereum addresses, by contrast, tend to be
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sanctioned during active use, averaging sanctions %".’* days before their last recorded transaction.

Only "(.%#% of Ethereum addresses are sanctioned one year after their last activity. These timing

di.erences suggest that sanctions on Ethereum addresses are more likely to be e.ective, as they are

often imposed while addresses are still active. Since Bitcoin sanctions typically occur after the funds

have beenmoved, the funds only stop criminals from reusing the address, but are generally not actually

freezing funds.

In Figure ( Panel B, we plot the balances of sanctioned addresses and the destinations of their trace

out&ows with Bitcoin in the left subpanel and Ethereum in the right subpanel. The bars show the bal-

ances of these addresses over time and their subsequent destinations, indexed by months since sanc-

tions. In Bitcoin, the total &ow that has passed through these transactions totals more than ’,%,$$$

Bitcoin. We /nd that the balance in these addresses seldom stays in the sanctioned wallet."’ Instead,

balances commonly &ow to other downstream wallets that reach popular exchanges such as Binance or

HTX, and other service providers such as Hydra, a now-defunct Russian dark marketplace. After the

sanctions, the eventual destination of these addresses is mostly unchanged, largely because the sanc-

tions occur much later than the last transaction date. In Ethereum, we /nd that prior to sanctions,

these addresses have also established accounts with a few centralized exchanges, such as Bit/nex and

Binance. Sanctions are more likely to occur when there is still a balance in the wallet, as shown by

the light blue bars. After being sanctioned, around ’%$,$$$ Ethereum were sent to Tornado Cash,

providing a direct channel for money launderers to plausibly avoid sanctions. A similar amount was

sent to other Ethereum wallets and remained on-chain.

In summary, the sanctioned addresses received over *"$,$$$Ethereum and ’,%,$$$Bitcoin. Valued

at prices at the time funds entered the sanctioned addresses, these amounts correspond to about )’.%%

billion and )*."% billion, respectively. Of these total in&ows, close to ’%%,$$$ ETH (#(.,$%) and

’$$,$$$ BTC (%’."-%) remain on-chain. Using prices at the time of deposit, sanctioned entities o.-

ramped funds to centralized exchanges and mixers: )%"*.(" million to Binance, )*%(.(’ million to

Tornado Cash, )#"#.’+ million to Hydra, )’*+."" million to HTX, and the remainder )"%#.$" million

"’The light blue stacked bars at the top of each bar indicate the BTC still held in sanctioned wallets, i.e., the running
balance. These bars are often barely visible because the BTC is typically transferred out quickly after arrival.
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to other exchanges. Of these, only the &ows to Tornado Cash occur after sanctions; all other funds

exited the Ethereum and Bitcoin blockchains before sanctions through well-established centralized

exchanges.""

The assets that remained on-chain are e.ectively frozen, as sanctioned entities have been unable

to transfer these funds through centralized exchanges and convert them into /at currency. Thus,

sanctions, though used relatively infrequently, appear e.ective in that they sever these actors from

the traditional /nancial system. The remainder have either already entered centralized exchanges or a

mixer service such that the on-chain path can no longer be traced. Naturally, sanctions would be more

e.ective if they could be used more often, enforced sooner, or before a centralized exchange accepts

the funds. Discouraging the use of mixers would also help make sanctions more e.ective since mixers

are a preferred method to avoid sanctions.

V. Freezing Stablecoins

The risk of asset seizure is a critical consideration inmoney laundering schemes. Stablecoin issuers like

Tether (USDT) andCircle (USDC) have the technical ability to freeze these assets and prohibit speci/c

users from future transactions with that stablecoin. However, stablecoin issuers have historically not

been held to the standards of traditional banks, and “the absence of a regulated /nancial institution,

subject to AML/CFT obligations can limit authorities’ collection of and access to information. It

can also reduce the e.ectiveness of preventive measures” (US Department of the Treasury, "$"*). In

this section, we consider how illicit &ows respond when the expected probability of asset seizure may

increase due to related freezes.

Figure + presents data on ’,+,- instances where Ethereum addresses were prohibited from future

Tether interactions. In total, almost )’.#* billion in Tether is held in frozen addresses."# Of the )’.#*

""Figure IA.- and Figure IA., show the total in&ow to sanctioned addresses and their services of choice, as well as the
dollarized value of the respective amounts stuck on-chain in event time. Panel A of both /gures plots the Bitcoin and
Ethereum out&ows over calendar time, respectively. Importantly, the large in&ows to Tornado Cash during the middle of
"$"" correspond to a series of hacks targeting DeFi platforms in the Ethereum network. The largest of these was the Axie
In/nity Ronin bridge hack perpetrated by the Lazarus Group. See here for further details on this hack.

"#We drop instances where an address was added to the list of frozen assets and then later removed. To be consistent
with the tracing framework that conservatively excludes large addresses, we only show addresses that are frozen with less
than ",$$$ transactions. This ensures that we do not trace paths associated with shadow exchanges.
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billion frozen, we /nd that approximately )($$million also appears in the traced network of reported

criminal &ows. In Table %, we present statistics on the #,( frozen addresses that also appear in this

network. As also seen in Panel A, these addresses are most often found in the network of pig butcher-

ing, scams, impersonation, and phishing addresses. This may indicate that stablecoin issuers are more

likely to respond to freeze requests from law enforcement in investigations tied to scams with larger

average losses. In the last row, we denote the aggregate overlap and consider the implications. The

#,( frozen addresses are downstream from #,’+, reported criminal origins. In total, these origins have

transferred )*., billion in total out&ow. Of the original capital leaving these addresses, )%%% million

is received by the addresses that have been frozen, compared to the exact )($#.’* million frozen."*

Therefore, one back-of-the-envelope calculation is that, conditional on a network being correctly tar-

geted for seizure, only ’"% of capital ()($$ million out of )*., billion) in these addresses is currently

seized. In total, we /nd that )’.#* billion Tether and ),#.’" million USDC have been frozen. Of this,

)($-.(% million is frozen in addresses that appear in the traced network.

In Panel B of Figure +, we plot the activity of the addresses leading up to the asset seizure. These

seizures have a wide variety in the number of days active and balance at the time of being frozen. We

see that many were active for years prior to being frozen. However, most of them cease activity upon

seizure, with a few exceptions using USDC and Ether."% In the next subsections, we consider how

related addresses react when shocked by a plausibly random seizure, and if higher risk leads to higher

cost.

A. How Do Related Addresses React to Asset Freezes?

Figure - plots &ows in the hours immediately before and after the freeze. Bars above zero indicate

in&ows and bars below zero indicate out&ows. Hatched bars denote &ows that arise from token swaps

rather than simple transfers. In Panel A, we see that frozen addresses react immediately: within the

/rst hour, they swap USDC into DAI, and in the following hours, they move out ETH and DAI, in

"*Interestingly, )’$, million of blacklisted funds are destroyed out of the total frozen. The term “blacklist” is used
because that is the name of the asset seizure function in the Tether contract.

"%We also examine USDC freeze events in Figure IA.’$, and /nd that they are relatively less common than Tether
freezes. Nevertheless, similar patterns emerge where wallets with frozen USDC largely cease all other activity, with a few
exceptions. Table IA." presents the statistics on the frozen USDC addresses found in our traced network.
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part because they were unable to move any frozen Tether. We then examine addresses related to the

frozen ones through gas clustering, as described in the methodology section. Panel B documents a

similar response over the next "* hours, with both USDC and TUSD swapped into DAI and a rise

in transaction activity in the hours after the freeze."( These observations are consistent with a rapid

shift away from assets that can be frozen. USDC and TUSD, like Tether, can be frozen by their issuers,

whereas DAI does not have a freeze function."+ The evidence suggests that freezes are e.ective and

that coordination by stablecoin issuers is important for enforcement. We formally test this behavior of

increased transaction volume using a di.erence-in-di.erences framework. The treated group consists

of the frozen addresses and their related counterparts, while for every treated address, the control

group is a random sample of "$ addresses that also received Tether in the preceding three days. The

estimated coe!cients are plotted in Figure IA.’’, where the outcome variables are transaction value

and transaction count. Table IA.# tabulates results and /nds that the related addresses transferred an

average of *((% more dollar &ow in ’.#( greater number of transactions in the "* hours after a freeze

than the control group, indicating that the market participants are concerned that additional funds

may be frozen.

Next, we further investigate whether treated addresses shift their activities towardDeFi services af-

ter their Tether balances are frozen. To formally test it, we employ a di.erence-in-di.erences design

at the group-cohort-month level. Each cohort represents one seizure event and consists of a treat-

ment group and a control group. The treated group consists of the frozen address and its related

addresses identi/ed via gas clustering. For every freeze event, the control group is a random sample

of "$ addresses that received in&ows of at least )’$$ within the seven days prior to the freeze. For

each treatment and control group within every cohort, we de/ne the dependent variable DeFi Share as

follows:

DeFi Shareg,c,t =

∑
i↓g DeFi flowsi,g,c,t∑
i↓g All flowsi,g,c,t

,

"(TUSD refers to TrueUSD, a U.S. dollar–backed stablecoin that can also be frozen by its issuer.
"+While Tether and USDC can be frozen by their respective stablecoin issuers, the DAI smart contract does not have

the functionality to restrict future usage. Notably, the issuer of DAI has recently shifted its focus to a new stablecoin with
built-in seizure capabilities.
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whereDeFi flowsi,g,c,t denotes the dollar amount transferred to DeFi services by address i in treat-

ment or control group g in cohort c in month t. Then, we run a regression of the form:

DeFi Shareg,c,t =
∑

t ↑=tfreeze

ϑt → 1(Month = t)→ Treatg + µc + ϱt + ςg,c,t

whereµc are cohort /xed e.ects, and ϱt aremonth /xed e.ects. Figure , plots the coe!cients by event

time, and Table ( tabulates the coe!cients. Overall, we /nd that the share of &ows to DeFi services by

frozen addresses and those linked to them increases by approximately "%% following Tether’s freezing

of their assets. This is evidence in support of the idea that the asset seizures as part ofAML enforcement

can incentivize a.ected entities to turn to costlier and less regulated services, such as DeFi protocols,

potentially to obfuscate their &ows.

B. What Money Laundering Patterns are Associated with Asset Seizure?

After observing that asset seizure leads related addresses to use costlier obfuscation services, a natural

economic question is whether greater obfuscation e.orts are associated with a lower probability of

seizure. In Figure IA.’", we plot the dollar-weighted probability that Tether freezes an address in our

traced network. We sort paths into quintiles based on two metrics: total transaction cost and the

duration of the path. Total transaction cost includes the transaction cost fees paid at each hop and

sums the total fees paid for each hop on the path. It also calculates the spread lost from swaps where

one cryptocurrency is converted into another cryptocurrency."- The spread is calculated based on the

dollar value of crypto of input compared to the amount received as output. Duration of the path is

calculated as the time leaving an origin compared to the time when funds were received at a centralized

exchange.

We /nd that the paths most likely to contain a frozen address fall into the highest quintiles of both

transaction cost and path duration, with a freeze probability of +.-%. In contrast, paths in the lowest

cost and shortest duration quintiles have only a $.*% chance of containing a frozen address. One must

be careful in evaluating this /gure because it re&ects only a correlation and not a causal relationship. A

"-For reported address &ows, we follow swapped funds through Uniswap, ’inch, Tokenlon and curve./, which accounts
for ,"% of the DEX activity.
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key endogeneity concern is that law enforcement may focus more heavily on sophisticated actors who

have obtained larger illicit proceeds. These entities may delay their actions because they are aware that

depositing large sums too quickly could attract attention. As a result, they may be unable to pool with

the faster, low-cost transaction paths used by smaller actors, and instead must store funds on-chain

for longer periods, increasing their exposure to detection.

VI. U.S. Settlements with Exchanges

The most critical money laundering defense is services where on-chain funds can be converted into

/at currency and reintegrated into the traditional /nancial system. For most users, exchanges o.er the

deepest liquidity and greatest breadth of features for o.boarding on-chain funds. Exchanges are also

the best-positioned players with rails to the traditional /nancial system to correctly perform know-

your-transaction monitoring. However, some exchanges have historically maintained weak compli-

ance processes, which create opportunities for money launderers to convert crypto into /at unde-

tected.

On November "’, "$"#, Binance pleaded guilty to anti-money laundering and sanctions violations

as part of a settlement with the U.S. Department of Justice.", As part of the agreement, the company’s

founder and CEO resigned, and Binance paid over )* billion in penalties. At the time, Attorney

General Merrick Garland stated, “Binance became the world’s largest cryptocurrency exchange in part

because of the crimes it committed. Now it is paying one of the largest corporate penalties in U.S.

history.” On May ’+, "$"*, the DOJ appointed two independent compliance monitors to oversee

Binance for a three-year term. Similarly, on February "*, "$"%, OKX pleaded guilty to violating U.S.

anti-money laundering laws.#$ We use these announcements to evaluate whether customer &ows to

these exchanges changed following the pleas.#’ We focus on changes around the settlement of two

tainted &ows: Tornado Cash and victim-reported illicit &ows.

",See here for the DOJ press release on Binance settlement.
#$See here for the DOJ press release on OKX settlement.
#’Customers may choose not to remit funds to these exchanges either because of the announcement e.ect, or due to

direct tighter post-plea compliance measures that deter future transactions.
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A. Do Tornado Flows decrease after Exchange Settlements?

A sharp test of Binance’s sanctions compliance is whether it continued to receive &ows from Tor-

nado Cash after the settlement. Figure ’$ presents data in the same format as Figure %, but focuses

speci/cally on &ows to Binance compared to all other overseas exchanges around November "$"#. The

blue and yellow bars plot the monthly share of Tornado Cash out&ows reaching Binance and all other

overseas exchanges, with yellow denoting paths that swapped through a DEX. In "$"# and before the

DOJ settlement with Binance, Binance received an average of #.,-% of all Tornado Cash out&ows to

overseas centralized exchanges. In the months after the DOJ’s settlement with Binance and before the

Tornado Cash ban was lifted in November "$"*, this share declined sharply to $.+%%, representing

an -’.",% reduction, which is statistically signi/cant at the $.’% level (t-statistic = %.(’). The decline

is even larger when measured after the start of the compliance monitorship in June "$"*, falling fur-

ther to $.%*%. In contrast, &ows to other overseas exchanges also declined but less dramatically, from

’’.-$% before the settlement to +.(*% post-settlement. This is primarily due to Tornado Cash users

redirecting their funds toward bridges at the same period, as shown in Figure %.

Additionally, the red line in Panel A shows that addresses that continued to reach Binance did

so with more intermediate hops after the monitorship began. We formally test this pattern using a

dynamic di.erence-in-di.erences framework, with estimated monthly coe!cients plotted in Panel B.

The outcome variable is the number of intermediate hops for transfer paths from Tornado Cash to

centralized exchange destinations. The treatment group consists of &ow paths to Binance, and the

control group consists of &ow paths to other overseas centralized exchanges. The estimates show no

signi/cant change in the number of hops immediately after the settlement, but a clear increase follow-

ing the start of the compliance monitorship. This pattern suggests that users who continued sending

Tornado Cash &ows to Binance began adopting more complex routing paths to obscure the origin of

funds, and that users became more hesitant to send funds to Binance. Notably, the number of hops

declined after the Tornado Cash ban was lifted, consistent with reduced incentives for concealment

once the sanction was removed.

Overall, the fact that out&ows from Tornado Cash to overseas exchanges did not decline sharply
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after Tornado Cash sanctions but only after the exchanges settled with the DOJ indicates that the

crypto industry does not always self-police and that regulatory enforcement can be e.ective at ensuring

compliance.

B. Do Other Criminal Flows Decrease after Exchange Settlements?

As discussed, TornadoCash andOFAC-sanctioned&ows are a relatively small set of activities. We next

consider whether the share of tainted &ows from various forms of criminal activity appears to shift

from Binance or OKX to other exchanges after their respective announcements. For this section, we

use deposit address clustering to /nd related addresses that remain active over di.erent time periods

than those that directly appear in our traced network, as discussed in the methodology section.#"

To investigate this shift, Panel A of Figure ’’ compares monthly in&ows to tainted deposit ad-

dresses at Binance (solid line) and at other exchanges (dashed line), with vertical red dashed lines

indicating the timing of the DOJ settlement and the start of the compliance monitorship. It shows

that while in&ows to tainted addresses are rising for both Binance and other exchanges over time, the

increase is notably sharper for other exchanges after the settlement, indicating a relative decline in

Binance’s share of tainted in&ows.

To formally test for a di.erential shift, we estimate a di.erence-in-di.erences (DID) regression at

the deposit address-month level. Speci/cally, the regression is of the form:

log (1 + Total Inflowi,t) =
∑

t ↑=tNov2023

ϑt → 1(Month = t)→ Treati + µi + ϱe + φt + ςi,t

where log (1 + Total Inflowi,t) denotes the log of one plus the total tainted in&ow received by de-

posit address i in exchange e inmonth t. We includeµi for deposit address/xed e.ects, ϱe for exchange

/xed e.ects, and φt for month /xed e.ects. The treatment group consists of tainted Binance deposit

addresses, while the control group consists of all tainted deposit addresses at other exchanges. Panel B

plots di.erences-in-di.erence coe!cients. While there is no immediate impact in the months just

#"Another important challenge is that the network of tainted &ows su.ers from a sample bias such that tainted ad-
dresses are reported with a lag. However, we can overcome this bias by comparing the magnitude of tainted paths to
Binance and tainted paths to other exchanges in the same month, assuming that the reporting lag is independent of their
downstream exchange destination.
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after the settlement, we /nd that the in&ow to tainted Binance deposit addresses begins to fall rel-

ative to controls starting in early "$"* and continues to decline after the monitorship is announced.

Table + reports regression results for both the Binance and OKX samples using the same di.erence-

in-di.erences speci/cation. Column (’) presents estimates for the Binance sample, where the post

period is de/ned as months after November "$"# (following the DOJ settlement). The results show

that in&ows to tainted Binance deposit addresses declined by ’-.*% relative to other exchanges after

the settlement, consistent with the visual pattern in Figure ’’.

We also examine the e.ects of the OKX settlement, comparing tainted &ows to OKX deposit ad-

dresses versus other exchanges around its settlement date, using the same di.erence-in-di.erences

design. Column (") of Table + reports the regression results, and Figure IA.’# visualizes the corre-

sponding time series patterns. The results show a decline in tainted &ows to OKX as well. However,

given the recency of the announcement, the aggregate time series bears some sample bias as discussed

earlier. The di.erence-in-di.erence also suggests a decline in &ows relative to all tainted &ows, but

more data will be needed to see the full e.ect. Overall, this suggests that tainted &ows to both Binance

and OKX have modestly declined after their respective settlements. Nevertheless, these exchanges still

handle large fractions and amounts of criminal &ows, indicating that the bulk of their e.orts is focused

on the o!cial OFAC &ows.

VII. Deposit Patterns by Tainted Deposit Addresses

Data collected as part of the Bank Secrecy Act is a cornerstone of the anti-money laundering policies

of the U.S. Treasury’s Financial Crimes Enforcement Network (FinCEN) (Cuéllar, "$$"; Gao, Pacelli,

Schneemeier, and Wu, "$"#). In "$"#, more than ’%% of all FBI investigations were directly linked

to reports of suspicious transactions.## Under these policies, any deposit of )’$,$$$ or more must

be reported under a Currency Transaction Report (CTR), and any suspicious transactions, such as

repeated deposits, deposits just under the threshold, or funds of questionable origin, must be reported

under a Suspicious Activity Report (SAR). Crypto exchanges are also required to report suspicious

##Source: see FinCEN Year in Review
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transactions as part of their money service business license. If criminals are concerned with such

reporting, they might structure their deposits to avoid detection. In this section, we test whether

tainted deposit addresses are more likely to use round-numbered transaction amounts or to bunch

just below the )’$,$$$ threshold. We categorize deposit addresses by whether they are tainted by

traced criminal &ows and study their transaction patterns relative to untainted addresses.

A. Use of Round Numbers

A natural starting point is to examine whether illicit actors favor round-numbered deposit amounts,

which could re&ect deliberate behavioral structuring or simple heuristics (Nigrini, "$’-). Figure ’"

plots two distributions: the distribution of transaction counts for illicit &ows in red and the distri-

bution of all other &ows in blue. The other &ows likely contain considerable illicit &ows as well,

though mixed in with more non-illicit activity. Note that the y-axis is on a logarithmic scale. Bins

divisible by )’,$$$ are represented by squares, and bins divisible by )’$,$$$ are shown as triangles.

Round-number bins, depicted by these shapes, are noticeably elevated compared to neighboring bins,

re&ecting the general tendency to use round numbers. When comparing illicit actors to others, the

red illicit markers are almost always above their corresponding marker for other &ows after )’,$$$

because illicit actors generally use larger transaction sizes. However, the separation between illicit

and other &ow markers becomes especially pronounced at round-number values, suggesting tainted

addresses use round numbers more frequently.

To formally test whether tainted deposit addresses are more likely to use round numbers, we es-

timate regressions where the dependent variable is an indicator equal to one if the deposit amount is

exactly divisible by %$$ or ’$$$. The independent variable, Tainted, is an indicator equal to one if the

deposit address is tainted by traced criminal &ows. Columns (’) and (#) of Table - show that tainted

deposits are signi/cantly more likely to use round numbers. Speci/cally, tainted addresses are ’# per-

centage points more likely to deposit amounts divisible by %$$, and ’" percentage points more likely to

deposit amounts divisible by ’$$$. Columns (") and (*) add an interaction term between the tainted

indicator and a Western exchange dummy to test for di.erential behavior across jurisdictions. The
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interaction terms are small and statistically insigni/cant, indicating that the use of round-numbered

deposit amounts does not di.er systematically between Western and overseas exchanges.

To account for the fact that tainted deposit addresses tend to use larger transaction sizes, we repeat

the analysis using only deposits greater than )’$$. As shown in Table IA.*, the results are similar. As

an additional robustness test, we examine whether the e.ect is speci/c to round-number values by

testing deposit amounts that are close but not exactly divisible by round numbers. If the results are

truly driven by round-number behavior, we should not observe similar e.ects when the dependent

variable captures non-round-number amounts. In Table IA.%, we rede/ne the dependent variable to

capture deposits that leave a remainder of ’, *,,, or ,,, when divided by %$$ or ’$$$. Across these

speci/cations, the coe!cients on the tainted indicator are either statistically insigni/cant or extremely

small in magnitude. These /ndings support the interpretation that tainted addresses speci/cally favor

round-numbered deposit values.

B. Bunching around the Reporting Threshold

Beyond round-number e.ects, we also study whether tainted addresses exhibit strategic behavior

around the )’$,$$$ reporting threshold. We begin by plotting the distribution of deposit transac-

tion sizes within a narrow window around the )’$,$$$ threshold in Panel A of Figure ’#. The /gure

displays the density of deposits for tainted (red) and untainted (blue) addresses, using solid circles for

&ows divisible by )’$$ and hollow circles otherwise. High-order polynomials are /tted separately for

each group, with dashed lines corresponding to bins not divisible by )’$$. The distribution is shown

separately for Western and overseas exchanges.

The results reveal several important patterns. First, there is a clear spike in the frequency of de-

posits exactly at the )’$,$$$ threshold, as shown in Figure ’". Second, there is more bunching right

below the threshold than right above it, as supported by the discontinuity between the dashed lines to

the left and right of the )’$,$$$ threshold. This pattern holds for both tainted and untainted &ows,

as indicated by the overlapping blue and red dashed lines. It is also observed in both Western and

overseas exchanges. Third, when focusing on round-number bins below the threshold, tainted &ows
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bunch at these numbers more than untainted &ows, though mainly atWestern exchanges. This is most

evident at deposit amounts such as ),,,$$, ),,-$$, and ),,%$$. To formally test the illicit actors’ be-

havior of bunching below the threshold, we estimate the following regression form separately for every

)’$ deposit bin k in the ),,%$$–)’$,%$$ window:

1(d ↑ k)d,k,i,e,t = ω + ϑk → Taintedi + ϱe + φt + ςd,k,i,e,t

where 1(d ↑ k) is an indicator variable equal to one if deposit d falls into bin k, and Taintedi is

an indicator for whether deposit address i is tainted by illicit &ows. The coe!cient ϑk captures the

di.erence in the probability that a tainted deposit address uses a speci/c deposit amount (bin k)

relative to an untainted address. All regressions include exchange /xed e.ects to account for time-

invariant exchange-speci/c characteristics, and year-month /xed e.ects to control for common tem-

poral shocks. The regressions are run separately for Western and overseas exchanges.

The regression results are presented in Panel B of Figure ’#, with green markers corresponding to

Western exchanges and purple markers to overseas exchanges. The estimates reveal several patterns.

First, at the )’$,$$$ threshold, the coe!cients are positive for both Western and overseas exchanges,

indicating that tainted deposit addresses are more likely to use this exact amount compared to un-

tainted ones. However, the e.ect is notably smaller in Western exchanges, suggesting that bunching

at the threshold is mitigated in Western exchanges. Second, at deposit amounts immediately below

the threshold, such as the ),,,,$ and ),,,-$ bins, the coe!cients are negative, implying that tainted

addresses are less likely to use these slightly sub-threshold amounts relative to untainted users. This

e.ect is again weaker in Western exchanges, indicating that illicit actors are more likely to use these

near-threshold values when interacting withWestern exchanges thanwith overseas ones. Third, within

Western exchanges, the coe!cients are positive and statistically signi/cant at round-number bins be-

low the threshold, including ),,,$$, ),,-$$, and ),,%$$. Together, these results are consistent with

the patterns in Panel A that illicit actors favor round-numbered deposit sizes and bunch just below

the reporting threshold at Western exchanges.

Critics of CTR and SAR reporting argue that these requirements generate unnecessary busywork
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and produce a volume of reports too large to be meaningfully analyzed (Cuéllar, "$$"). Overall, while

the requirements appear to in&uence deposit patterns, their ability to e.ectively discriminate between

tainted activity does not appear as an extremely strong pattern. E.ort spent on the )’$,$$$ threshold

might be more e.ectively applied to monitoring criminal &ows.

VIII. Aggregate Trends

The prior sections explore an arsenal of anti-money laundering regulations used to deter illicit /nan-

cial &ows between "$"$ and "$"%. These actions have increased the cost of money laundering and

may have heightened expectations around the probability of asset seizure. This section explores: what

substitutes are available to users as the costs of money laundering increase?

Figure ’* compares two cohorts: (i) hackers active before the ban, and (ii) those who started mov-

ing the funds after the ban. We plot the traced dollar &ows of each group to various destinations,

highlighting sizable shifts in blue and entirely new top destinations in red. The pre-ban group relied

heavily on Tornado Cash. By contrast, the post-ban group uses Tornado Cash at lower rates and shifts

to other major services. We see that Wrapped Ether experiences the largest jump. Hackers appear to

convert their stolen Ether into Wrapped Ether, possibly as an intermediary step before onward trans-

fers. Among the newly popular destinations, Thorchain stands out the most. Thorchain is a bridging

protocol that enables cross-chain transfers without going through centralized intermediaries. Hackers

likely hope that moving funds across di.erent blockchains via bridges will obscure the trail and make

their activities more di!cult to trace. Furthermore, hackers do not seem to widely use identi/ed non-

KYC exchanges, as these are relatively short-lived and only handle relatively small crypto deposits, as

shown in Figure IA.’%. Our results indicate that while the ban on Tornado Cash reduced its usage,

hackers adapt quickly and adopt other mixing or bridging services once any single laundering route

becomes riskier.

North Korean hackers are an emblematic example that encapsulates how the environment has

evolved. Not only were North Korea proli/c users of Tornado Cash before the software was sanc-

tioned, but a high-pro/le North Korea hack was also the precipitating event that led to the "$"" sanc-
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tions.#* In February "$"%, North Korea is alleged to have stolen )’.* billion from the exchange Bybit,

marking the largest crypto heist in history. Figure ’% plots these &ows, with stolen funds initially exit-

ing Bybit on Ethereum and being forwarded by hackers through Ethereum-based wallets and services,

represented in the center. Within Ethereum, we see )*".- million sent to OKX, but the majority of

funds, or ),(-.’%million, we traced through Thorchain to addresses on the Bitcoin blockchain, likely

to minimize seizure risk. We calculate the transaction costs of this operation: transfers on Ethereum

cost )’" thousand, using Thorchain to bridge to Bitcoin incurred )#.+, million (*" basis points), and

subsequent Bitcoin transfers added another )(+ thousand in miner fees, for a combined )#.-+million.

Notably, North Korea seems to have substituted from Tornado Cash, a service with relatively low cost

(#$ basis points), to bridges, which are more costly. The excessive splitting into over #*,$$$ trans-

actions was likely an attempt to cheaply obfuscate their &ows. Additionally, speed appeared to be a

priority, given that, after thousands of transactions, the Ethereum proceeds were bridged to Bitcoin

within "* hours following the hack. Once on the Bitcoin blockchain, the funds continue to circulate

through a wide network. Approximately ),-.+ million has been deposited in Freebitco.in, a Bitcoin-

based wallet and gambling service. However, the vast majority of funds otherwise remain dormant on

the Bitcoin blockchain.#%

The Bybit hack illustrates that storing assets in Bitcoin, despite the structural disadvantages of

blockchain transparency and the price volatility of &oating cryptocurrencies, can be preferable to the

relatively high risk of asset seizure on Ethereum. While it was technically feasible to route the stolen

funds through a mixer, the limited liquidity in such protocols is unlikely to support the laundering

of over )’ billion within a short time horizon without attracting enforcement action. Instead, the

hackers bridged the funds into Bitcoin, which, owing to its decentralized design and the absence of

custodial intermediaries, o.ers greater protection against seizure. The North Korean Lazarus Group

may be assessing opportunities to exchange Bitcoin for /at currency or real-world goods. Ultimately,

the episode highlights that, without substantial liquidity in mixers, even high-pro/le and extremely

#*North Korea hacked Harmony Bridge and used Tornado Cash to launder the funds in June "$"", and Tornado Cash
was sanctioned in August "$"".

#%Figure IA.’( plots the cumulative tainted BTC associated with said hack, and the corresponding in&ows to
Freebitco.in deposits.
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sophisticated attacks like this are potentially traceable.

IX. Conclusion

We provide the /rst empirical investigation of money laundering policies in the crypto arena. We ob-

serve decreased illicit volume following the sanctioning of Tornado Cash, other OFAC designations,

and major exchange settlements. We also /nd evidence that users respond to these restrictions by

switching to higher-cost methods. Tornado Cash users, for instance, incur higher transaction costs

when attempting to access centralized exchanges, and addresses linked to stablecoin freezes show in-

creased reliance on decentralized exchanges. Sanctions appear e.ective in making it more di!cult for

sanctioned entities to /nd destinations to o.-board funds. Overall, our /ndings indicate that crypto

asset freezes and anti-money laundering enforcement have been costly to criminals, with enforcement

actions against services, such as mixers and exchanges, being the most consequential.

Nevertheless, our analysis indicates many areas for improvement. Even though OFAC sanctions

keep funds on-chain, few addresses and dollar amounts are sanctioned, and often, too late. Addi-

tionally, while overseas exchanges see reduced sanction-related &ows after enforcement actions, they

continue to receive illicit volume and have not experienced a substantial reduction in tainted &ows

from other forms of criminal activity, such as scamming. The sanctions against TornadoCashwere also

insu!cient to deter some overseas exchanges until additional /nes were assessed against exchanges,

indicating thatmultiple enforcement actionsmay be necessary to plug enforcement weak spots. There-

fore, reputational risk and the goodwill of exchanges to stop crime do not appear to be e.ective de-

terrents in the crypto space. Reducing &ows to the Tornado Cash mixers led to greater blockchain

transparency; thus, if mixer popularity increases as sanctions are lifted, then e.orts to freeze criminal

proceeds may be substantially more di!cult. Additional research should also consider the costs and

bene/ts of monitoring. Our research demonstrates how the blockchain makes tracing and monitoring

more straightforward than in other contexts, such that large-scale monitoring could be automated for

reasonable costs. We hope additional research will further analyze crypto crime and enforcement to

help enact reasonable policies that both facilitate legitimate capital formation and deter crime.
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Figure #: Tornado Cash Transaction Networks

This /gure visualizes &ows involving Tornado Cash. It illustrates the network of &ows involving Tornado Cash,
with senders positioned on the left and receivers on the right. Edges concave down represent &ows moving from
left to right (e.g., the curve moves as if going from , o’clock to # o’clock), while edges concave up indicate &ows
moving from right to left (e.g., from # o’clock to , o’clock). This is a sample constructed by selecting the largest
",%$$ nodes within % hops from Tornado Cash and keeping connected paths. This was selected to re&ect the
largest ↓’$,$$$ edges related to Tornado Cash.
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Figure $: In"ows to Tornado Cash

This /gure shows the total in&ows and traced criminal in&ows to Tornado Cash from "$"’ to "$"*. The bars
indicate the monthly total in&ows to Tornado Cash. The di.erent shades in the bars represent the in&ows from
the top one depositor (dark blue), the top two to /ve depositors (blue), and all other depositors (light blue).
The red line represents the percentage of traced criminal in&ows from all scam types. The blue line shows the
probability of matching the withdrawal transaction to the top depositor. This probability is estimated using a
forward projection approach that allocates each depositor’s in&ows to future days according to a Pareto decay
function; the weekly predicted out&ows are then used to calculate the share attributable to the top depositor.
While the bars are based onmonthly totals, the percentages and probabilities shown in the lines are computed at
weekly frequency and plotted as ten-week rolling averages. The dashed vertical lines indicate the period during
which Tornado Cash was sanctioned by the U.S. Treasury, beginning on August -, "$"", and lifted on November
"(, "$"*.
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Figure %: E!ects of U.S. Treasury Sanctions Against Tornado Cash on Hacker Flows

This /gure examines the change in hacker &ows around the U.S. Treasury sanctions on Tornado Cash. It plots
monthly di.erence-in-di.erences coe!cients from the regression

log(1 + TaintedF lows)i,d,t =
∑

t →=July2022

ϑt → 1(Month = t)→ Tornadod + ϖ → Tornadod + µi + ϱt + ςi,d,t

where log(1+TaintedF lows)i,d,t is the natural logarithm of one plus the amount of ETH traced from reported
hacker address i to destination d inmonth t. Hacker report andmonth/xed e.ects are included. Standard errors
are double-clustered by hacker report and month. The vertical dashed line marks the August -, "$"" sanction
of Tornado Cash.
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Figure &: Tornado Cash Out"ows to Destinations by Intermediate Hop

This /gure visualizes Tornado Cash out&ows and their destinations before and after the Tornado Cash ban on
August -, "$"", using Sankey diagrams. Panel A shows out&ows before the ban, and Panel B shows out&ows
after the ban. In each diagram, &ows originate from Tornado Cash on the left and proceed through intermediate
hops (e.g., Hop ’, Hop ", shown in ss) before reaching /nal destinations on the right. Flows into centralized
exchanges (CEXs) are shown in blue, decentralized exchanges (DEXs) in red, blockchain bridges in purple, and
wrapped ETH (WETH) in gray. When&ows arrive at aDEX, funds are traced through additional hops to identify
their ultimate destinations after swaps. The width of each &ow indicates the relative volume of funds moving
along that path. Western exchanges are Coinbase, Crypto.com, Gemini, and Kraken, and all other exchanges are
included as overseas exchanges.

Panel A: Before Tornado Cash Ban

Panel B: After Tornado Cash Ban
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Figure ’: E!ects of Tornado Cash Ban on Its Out"ows to Di!erent Destinations

This /gure examines the e.ects of the Tornado Cash ban on its out&ows to di.erent destinations. It shows Tornado
Cash out&ows to Western exchanges in Panel A, overseas exchanges in Panel B, and bridges in Panel C. In each panel,
bars represent the percent of monthly out&ows to the destination category: blue bars represent &ows that moved from
Tornado Cash to the destination without passing through any decentralized exchanges (DEXs), while yellow bars rep-
resent &ows that were /rst sent from Tornado Cash to DEXs, and then arrived at exchanges after being traced through
DEXs. The red line plots the average number of hops before funds arrive, and the dark blue line plots the average number
of days for transfers. Western exchanges are Coinbase, Crypto.com, Gemini, and Kraken, and all other exchanges are
included as overseas exchanges. Two black vertical dashed lines mark the sanction of Tornado Cash on August -, "$"",
and its lifting on November "(, "$"*.

Panel A: Western Exchanges

Panel B: Overseas Exchanges

Panel C: Bridges



Figure (: E!ect of OFAC Sanctions

This /gure plots OFAC sanction activity. Panel A shows scatterplots for BTC and ETH sanctioned addresses, with the
x-axis indicating the number of days between the /rst and last transaction, and the y-axis showing the number of days
between the /rst transaction and the sanction date. Dot size re&ects total lifetime in&ow, and the red line (rightmost
axis) shows cumulative in&ow. Histograms along the top and right display the percentage of addresses by last transaction
day and sanction day, respectively. The shaded triangles show the timing of sanctions: addresses above the *%-degree line
were sanctioned after their last transaction, while those below were sanctioned before. Darker red triangles highlight
addresses sanctioned with a delay of more than ’ year and more than " years after their last transaction, respectively.
Annotated percentages indicate the share of addresses in each group. Panel B plots destinations of &ows leaving addresses
sanctioned byOFAC, indexed bymonths since sanctions were imposed. Assets in the wallet correspond to those assets in
the sanctioned address, whereas the assets on-chain are those that have been forwarded in the corresponding blockchain,
but have yet to reach a known service.

Panel A: Sanctioned Day versus Last Transaction Day

Panel B: Balance Traced from Sanctioned Addresses to End Destinations



Figure ): Tether Freezes

This /gure presents the scope of Tether freezes and the pre-seizure activity of frozen addresses. Panel A summarizes
enforcement scale over time: the red line (left axis) plots the cumulative number of blacklisted addresses, while the
stacked bar (right axis) shows the cumulative dollar value of Tether frozen. Colored segments of each bar indicate frozen
addresses appearing in the traced network of reported criminal &ows and show the corresponding scam type, while
white segments indicate addresses outside that network. Panel B illustrates in&ow trajectories for frozen addresses prior
to seizure. This panel plots a select sample of frozen addresses that have received more than )’$K in total in&ows. The
horizontal axis reports the number of days each address was active prior to being frozen, and the vertical axis (log scale)
shows the total dollar in&ow to that address. Each dot represents a transfer event, with dot size re&ecting the cumulative
in&ow received by the address at that point in time. Multiple dots forming a line represent in&ow trajectories for a single
address. Red crosses mark the date each address was frozen.

Panel A: Cumulative Freezes Over Time

Panel B: Activity of Frozen Addresses Prior to Seizure



Figure *: Tether Seizure: Immediate E!ects

This /gure presents in&ows and out&ows indexed by the hours prior to and after the Tether freeze for the
targeted addresses and the addresses clustered around these. For both panels, in&ows and out&ows are re&ected
in the left-hand y-axis, and these &ows are broken into their corresponding cryptocurrency, here denoted by the
corresponding colors. In&ows are represented by upward-pointing bars, and out&ows are likewise represented
by downward-pointing bars. Hatched sections correspond to amounts swapped. On the opposite y-axis, the
running balance is represented. Panel A shows the &ows corresponding to the frozen addresses, which cannot
forward Tether after the frozen date, marked here by the dotted vertical line at the zero hour. Panel B shows the
out&ows of addresses related to but excluding the addresses that were frozen. These additional addresses were
clustered using a conservative common-funder heuristic.

Panel A: Frozen addresses

Panel B: Clustered addresses
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Figure +: Tether Seizure: Long-Term E!ects

This /gure examines whether blacklisted addresses and their related addresses increase their use of DeFi services
following an asset freeze. It plots coe!cients from a di.erence-in-di.erences regression of the DeFi share of
out&ows at the group-cohort-month level. Each cohort represents one seizure event and consists of a treatment
group and a control group. The treated group consists of the frozen address and its related addresses. For every
freeze event, the control group is a random sample of "$ addresses that received in&ows of at least )’$$ within
the seven days prior to the freeze. Speci/cally, the following regression is estimated.

DeFi Shareg,c,t =
∑

t ↑=tfreeze

ϑt → 1(Month = t)→ Treatg + µc + ϱt + ςg,c,t

where DeFi Shareg,c,t =
∑

i→g DeFi flowsi,g,c,t∑
i→g All flowsi,g,c,t

and it denotes the share of &ows sent to DeFi services for the
treatment or control group g in cohort c in month t. The regression includes the cohort /xed e.ects and event
time /xed e.ects and is weighted by total transaction value. The sample period is ’" months before and after
the freeze date of each cohort. Standard errors are clustered by asset seizure cohort and event time.
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Figure #,: Tornado Cash Out"ows to Binance around Binance Settlement

This /gure examines the e.ects of the Binance DOJ settlement and subsequent compliance monitorship on Tor-
nado Cash out&ows. Panel A presents Tornado Cash out&ows to Binance (left subpanel) and to other overseas
exchanges (right subpanel). In each subpanel, bars represent the percent of monthly out&ows to the destination
category: blue bars represent &ows that moved from Tornado Cash to the destination without passing through
any decentralized exchanges (DEXs), while yellow bars represent &ows that were /rst sent fromTornado Cash to
DEXs, and then arrived at exchanges after being traced through DEXs. The red line shows the average number of
hops before reaching the destination. Panel B compares the number of hops for transfers from Tornado Cash to
Binance versus other overseas exchanges using a di.erence-in-di.erences (DID) regression, with the estimated
coe!cients plotted over time. Year-month /xed e.ects and exchange /xed e.ects are included. Standard errors
are clustered by exchanges. Western exchanges are Coinbase, Crypto.com, Gemini, and Kraken, and all other
exchanges are included as overseas exchanges. Two red vertical dashed lines indicate key regulatory events at
Binance: the DOJ settlement on November "’, "$"#, and the announcement of the compliance monitorship
on May ’+, "$"*. Two black vertical dashed lines mark the Tornado Cash sanction on August -, "$"", and the
lifting of the sanction on November "(, "$"*.

Panel A: Tornado Cash Out&ows

Panel B: DID Analysis on Number of Hops
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Figure ##: Tainted Flows to Binance around Binance Settlement

This /gure examines whether tainted &ows to Binance declined following the Binance DOJ settlement and subsequent
compliance monitorship. Panel A shows monthly in&ows to Binance tainted deposit addresses (solid line) compared to
in&ows to all other tainted deposit addresses (dashed line). Panel B presents the estimated coe!cients from a di.erence-
in-di.erences regression at the deposit address-month level. The treatment group is composed of tainted Binance deposit
addresses, and the control group consists of tainted deposit addresses at all other exchanges. The regression is of the form:

log (1 + Total Inflowi,t) =
∑

t ↑=tNov2023

ϑt → 1(Month = t)→ Treati + µi + ϱe + φt + ςi,t

where log (1 + Total Inflowi,t) denotes the log of one plus the total tainted in&ow received by deposit address i in
exchange e in month t. The regression includes deposit address /xed e.ects, exchange /xed e.ects, and month /xed
e.ects. The /rst red dashed line corresponds to the DOJ settlement date, and the second red dashed line marks the
announcement of the compliance monitorship. Standard errors are clustered by deposit address and month.
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Figure #$: Round Number Deposits by Tainted Deposit Addresses in Exchanges

This /gure plots the distribution of transaction sizes for all exchanges split into bins of )’$$. Red dots show
illicit &ows, and blue dots show all other &ows. Right-bound bins divisible by )’$,$$$ are triangles, )’,$$$ are
squares, and all others are circles.
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Figure #%: Deposit Bunching in Western Exchanges

This /gure investigates deposit bunching around the )’$,$$$ threshold. Panel A plots the density of deposit
transactions within bins ranging from ),,%$$ to )’$,%$$, with the y-axis representing the percentage of total
transactions in this range. The )’$,$$$ bin precisely captures the round number; bins to its left are left-inclusive
(e.g., ),,,,$-),,,,,.,,), while bins to its right are right-inclusive (e.g., )’$,$$$.$’-)’$,$’$). The left subpanel
displays data for Western exchanges, and the right subpanel for Overseas exchanges. Solid red (blue) circles
represent tainted &ows (other &ows) divisible by )’$$, with hollow red (blue) circles denoting tainted &ows
(other &ows) indivisible by )’$$. Panel B presents the estimated coe!cient ϑk from the regression

1(d ↑ k)d,k,i,e,t = ω+ ϑ
k → Taintedi + ϱe + φt + ςd,k,i,e,t,

run for each deposit bin k. Here, 1(d ↑ k) is an indicator for a deposit d falling into bin k, and Taintedi is
an indicator for whether deposit address i is tainted. ϑk thus captures the di.erential probability of a tainted
deposit occurring in bin k relative to a non-tainted deposit, after controlling for exchange /xed e.ects and year-
month /xed e.ects. The regressions are run separately for Western (green) and Overseas (purple) exchanges,
with vertical bars indicating ,%% con/dence intervals. Standard errors are clustered by exchange-time.

Panel A: Deposit Frequency around )’$,$$$ Threshold

Panel B: Deposit Bunching Regressions
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Figure #&: E!ects of Tornado Cash Ban on Hacker Flows Destinations

This /gure examines the change in hacker &ows around the Tornado Cash ban. It displays &ows of reported hackers to
various destinations for hackers who started moving criminal funds before (left) and after (right) the ban. It highlights
sizable shifts in blue and entirely new top destinations in red.

Figure #’: Bybit Hack and Flows to Bridge

This /gure shows the &ows of proceeds of the )’.* billion theft from Bybit in February "$"%. The left-hand side shows
funds exiting Bybit and being forwarded through Ethereum by the hackers to the di.erent services represented in the
center. On the right-hand side of Thorchain are Bitcoin addresses, representing addresses downstream of bridge trans-
actions. Concave down edges represent &ows from a node on the left to another node on the right, and vice versa for
concave up edges. Edges are colored by the total )-amount, and nodes are colored by the corresponding type: service,
reported hacker, ETH wallet, BTC wallet, and BTC transaction. On Ethereum, we /nd about )’B is bridged through
Thorchain, and traced over )*".-M to the OKXWeb# service, )+.’M toMayachain, )*.(MLi/, )*.%M to ’inch, and )*.%
to other destinations. On the Bitcoin blockchain, we traced ),-.+M of the bridged funds to Freebitco.in, and )’.,M to
other exchanges. Last updated in August "$"%.
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Table #: Reports Summary

This table presents summary statistics on the number of reports and addresses with details provided by scam and
by blockchain. The leftmost column splits /rst by scam, and then represents the same data split by blockchain.
Column (’) indicates the total number of reports, while Column (") lists the active addresses within all reports.
Column (#) removes duplicates within each category (i.e., it is possible for an address to be named in multiple
categories. Column (*) drops addresses with more than ",$$$ transactions, which suggests that they may be
exchanges. The total in&ow to these addresses is displayed in Column (%).

(’) (") (#) (*) (%)

Category Total Reports Reports with
active address

and remove
duplicates
within cat.

and remove
likely

exchanges
Total In&ow

Stolen funds -,"** -,"$* -,"$* +,,-$ )’".,’B
Pigbutchering "#,(’# ’,,$’- ’’,+"% ,,$+’ )’’.#$B
Illicit actor %,#+$ %,#(+ %,#(* %,’%- )’’."%B
Contract exploit ,#- *", *", "++ )%.+(B
Phishing (%,-%" (*,,," (",+"* %#,,*" )*.*"B
Scam "(,,*" "(,+,( "(,+,( "",’(+ )".*(B
Extortion ’,",,’- ,’,,(( +,#,, (,*$, )’.-,B
Fake project *,$*# #,+,- ",%$" ’,-+# )--$.##M
Malware #,’*# ",#$* ",’", ",$$- )-’+.$’M
Fake returns *,(,+ *,"++ #,(,- ",%#% )(,(.+-M
Impersonation #’,*$( #$,**( "-,*$* "+,*$- )’#-.$*M
Airdrop +-- +## *,$ ##( )#+.%%M
Dark market +%% +%# +*, %++ )"-.#*M
Sim swap ’,’ ’(, ’%’ ’"’ ),.#,M
Address poisoning ’"",-$$ ’"",*"+ ’"",*"+ ’"",*’$ ),."(M
Donation scam (’( #%* "’- ’%- )".+%M

Bitcoin "**,##’ ’#,,#-# **,’"* #+,++# )"’.*(B
Ethereum "*+,,-% "*",(%$ "",,"(% "’,,’-% )#’.’%B

Total *,",#’( #-",$## "+#,#-, "%(,,%- )%".(’B
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Table $: Address Total In"ow Summary

This table presents summary statistics by scam of the total dollar in&ow into addresses. The N corresponds
to Column (*) of Table ’ and total in&ow corresponds to Column (%). This table presents the mean, standard
deviation, and the "%th, %$th, and +%th percentiles. Categories are sorted by total in&ow.

Category N Total In&ow Mean Std "%% %$% +%%

Stolen funds +,,-$ )’".,’B )’.("M )’*.(’M )(.(,K )($.#"K )#($.##K
Pigbutchering ,,$+’ )’’.#$B )’."%M ),.(%M )%."$K )(*.’,K )%$".’%K
Illicit actor %,’%- )’’."%B )".’-M )(".(,M )’%$.+* )’.#$K )’,.(-K
Contract exploit "++ )%.+(B )#"."$M )#’".-$M )’.,"K )##%.(,K )#.*#M
Phishing %#,,*" )*.*"B )-*.-"K )".’(M )$ )$ )(((.+*
Scam "",’(+ )".*(B )’’+.*,K )’.*$M )%#(.%( )*.(’K )"+.,$K
Extortion (,*$, )’.-,B )#’(.+-K )’’.,,M )%"%.(’ )’.##K )#."-K
Fake project ’,-+# )--$.##M )%$’.$*K )#.’,M )"".(% )’$.#$K )’%%.#(K
Malware ",$$- )-’+.$’M )*-".$’K )’.,,M )’.’(K )"(.’,K )""%.+#K
Fake returns ",%#% )(,(.+-M )#(,.-*K )’$.,"M )(+’.,’ )(.$,K )##."’K
Impersonation "+,*$- )’#-.$*M )%.’%K ),,.%+K )%.’$ )(.-’ )+.-*
Airdrop ##( )#+.%%M )’*"."%K )(+#.’$K )’%-.-- )+.**K )($.--K
Dark market %++ )"-.#*M )*,.’"K )#+#.#*K )%+.%, )"#(.’( )".,$K
Sim swap ’"’ ),.#,M ),".’$K )’%".(*K )#.,"K )"".##K )’’$.,%K
Address poisoning ’"",*’$ ),."(M )+%.(% )’".%#K )$.+* )’.%" )*.’$
Donation scam ’%- )".+%M )"#.(-K )’--.*%K )*%.+% )*$%.%, )".,%K

Total "%(,,%- )%".(’B )"$*.+#K )’".+(M )$.+# )#.+- )"#$.-%
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Table %: E!ects of the Tornado Cash Ban: Western versus Overseas Exchanges

This table presents the results of di.erence-in-di.erences (DID) regressions examining the e.ects of the Tor-
nado Cash ban on criminal behaviors and transaction costs. It compares Tornado Cash out&ows to Western
(treatment group) with those to overseas exchanges (control group). The outcome variables are the number of
intermediate hops (columns ’–"), the number of days to exit to an exchange (columns #–*), and transaction
costs, measured in decimals (columns %–(). Regressions are estimated at the path-exit level, where each “path”
corresponds to transfers originating from a single withdrawal of funds that pass through one or more interme-
diate hops before exiting to an exchange. Each path may include multiple exits, with each exit representing a
cash-out event to an exchange and counted separately. The number of days is measured from when the funds
initially leave Tornado Cash until they ultimately reach the exchange at each path exit. Transaction cost is ex-
pressed in decimal form ($.$% denotes %%) by summing transaction cost fees paid at each hop and the spread
lost from swaps, then dividing by the funds ultimately deposited into exchanges. Tornado Cash was sanctioned
on August -, "$"", and a path exit is assigned a post variable of one if the funds reached an exchange after this
date. Western exchanges are Coinbase, Crypto.com, Gemini, and Kraken, and all other exchanges are included
as overseas exchanges. All regressions are dollar-weighted by the amount of funds entering exchanges. Exchange
/xed e.ects and year-month /xed e.ects are included as indicated. Standard errors, clustered by path, are re-
ported in parentheses. The sample period covers March ’, "$"", to December #’, "$"#.

Dep. Variable: Number of Hops Number of Days Transaction Cost

(’) (") (#) (*) (%) (()

Treat → Post $."-%↔↔↔ $."-%↔↔↔ ’’+.-↔↔↔ ’"’.+↔↔↔ $.$$-+%↔↔↔ $.$$++$↔↔↔
($.$,,") ($.’$-) (""."+) ("".’*) ($.$$"($) ($.$$"(%)

Treat -$.’%+↔↔↔ #".$(↔↔↔ $.$$’$-
($.$*%") (+.$$() ($.$$$(-’)

Exchange FE ↭ ↭ ↭
Year-Month FE ↭ ↭ ↭ ↭ ↭ ↭
Observations ’#",$%$ ’#",$*$ ’#",$%$ ’#",$*$ ’#",$%$ ’#",$*$
Adjusted R2 $.$-(- $.’,% $.’+, $."+( $.$#’- $.$%+-
Dep. Var. Mean ’.+*’ ’.+*’ -(.,# -(.,’ $.$$%*% $.$$%*%
Dep. Var. Std ’.’’’ ’.’’’ ’+".+ ’+".+ $.$"(" $.$"("

Standard errors in parentheses
↑
p < 0.10, ↑↑ p < 0.05, ↑↑↑ p < 0.01
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Table &: E!ects of the Tornado Cash Ban: Tornado Cash Out"ows vs. Criminal-Address Out"ows

This table presents the results of di.erence-in-di.erences regressions examining the e.ects of the Tornado
Cash ban on its out&ows versus criminal &ows to exchanges. It compares Tornado Cash out&ows to exchanges
(treatment group) with &ows originating from reported criminal addresses to exchanges (control group). The
outcome variables are the number of intermediate hops (columns ’–"), the number of days to exit to an exchange
(columns #–*), and transaction costs, measured in decimals (columns %–(). Regressions are estimated at the
path-exit level, where each “path” corresponds to transfers originating from a single withdrawal of funds that
pass through one or more intermediate hops before exiting to an exchange. Each path may include multiple
exits, with each exit representing a distinct cash-out event to an exchange and counted separately. The number
of days is measured from when funds initially leave the source (Tornado Cash or a criminal address) until they
ultimately reach the exchange at that path exit. Transaction cost is expressed in decimal form ($.$% denotes
%%) by summing transaction cost fees paid at each hop and the spread lost from swaps, then dividing by the
funds ultimately deposited into exchanges. Tornado Cash was sanctioned on August -, "$"", and a path exit is
assigned a post variable of one if the funds reached an exchange after the ban. All regressions are dollar-weighted
by the amount of funds entering exchanges. Exchange /xed e.ects and year-month /xed e.ects are included as
indicated. Standard errors, clustered by path, are reported in parentheses. The sample period covers March ’,
"$"", to December #’, "$"#.

Dep. Variable: Number of Hops Number of Days Transaction Cost

(’) (") (#) (*) (%) (()

Treat → Post $.’(,↔↔↔ $.’""↔↔ ’#’.#↔↔↔ ’##."↔↔↔ $.$$#"(↔↔↔ $.$$##"↔↔↔
($.$*(*) ($.$*+%) ((."+$) ((."%%) ($.$$$(#-) ($.$$$(#,)

Treat $.’(-↔↔↔ $.’,"↔↔↔ "#.-%↔↔↔ "$.,%↔↔↔ $.$$#-*↔↔↔ $.$$#*,↔↔↔
($.$",,) ($.$#$$) (’.,*") (".$**) ($.$$$*$$) ($.$$$*"$)

Exchange FE ↭ ↭ ↭
Year-Month FE ↭ ↭ ↭ ↭ ↭ ↭
Observations ($-,+’# ($-,+’# ($-,+’# ($-,+’# ($-,+’# ($-,+’#
Adjusted R2 $.$*"+ $.$%*, $.’’- $.’#( $.$$%(% $.$$+’"
Dep. Var. Mean ’.%-# ’.%-# ’+.(- ’+.(- $.$$’’* $.$$’’*
Dep. Var. Std ’.%"+ ’.%"+ (,."- (,."- $.$’-, $.$’-,

Standard errors in parentheses
↑
p < 0.10, ↑↑ p < 0.05, ↑↑↑ p < 0.01
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Table ’: USDT Seizure Summary Statistics

This table summarizes USDT seizure statistics for blacklisted addresses overlapping with the traced criminal
network. The leftmost column lists each scam category. Column (’) reports the number of origin addresses in
that category where the downstream path reaches at least one blacklisted address. Column (") shows the number
of blacklisted addresses downstream of those origins. Column (#) reports the total dollar out&ow from the origin
addresses. Column (*) reports the dollar amount traced to these blacklisted addresses from origin addresses;
this value may exceed the origin out&ow in column (#) because a blacklisted address may aggregate &ows from
multiple origin categories. Column (%) shows the total dollar value frozen in these blacklisted addresses. Column
(() reports the dollar value of stablecoins destroyed by issuers after freezing. The last row presents the aggregate
overlap; the columns do not sum because one blacklisted address may appear in multiple paths downstream of
reported addresses.

(’) (") (#) (*) (%) (()

Category # associated # blacklisted ) origin ) traced ) total ) total
origins addresses out&ow to blacklist blacklisted destroyed

Impersonation ’,%-, (# ’.%"M ".($M ""-.%*M -.**M
Pigbutchering -%# ’-" *.’#B #**.%$M *$’.%+M %".%,M
Address poisoning ##’ ’’" ’-.+’K ’’.--K ’#".-+M ’$.#*M
Scam "-’ ’#* %’%.#%M ’$*.%+M #$’.-*M "*.#$M
Phishing %- ’%$ "’.$*M #.’"M "#$.*(M "-.,’M
Stolen funds #% #+ ’(’.,-M -(.$#M ,%.’$M ’#.%+M
Illicit actor ’* ’+ %"."(M #.--M "(.*$M #.#$M
Fake returns - ’’ "(.’%M ’.,-M %(.$’M $.%’M
Fake project ( ’’ +-.$,M *.--M %,.($M $
Contract exploit " " ’-$.,$K #.+,M $ $
Donation scam ’ ’ ,.#%K ,,.,, $ $
Sim swap ’ ’ %$.$*K -."$K "%.,’K $

Total #,’+, #,( *.,,B %%%.#-M ($#.’*M ’$,.$(M
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Table (: Share of Value to DeFi Services after Asset Seizure

This table examines whether blacklisted addresses and their related addresses increase their use of DeFi services
following an asset freeze. It presents the results from a di.erence-in-di.erences regression of the DeFi share of
out&ows, measured as the ratio of funds sent through DeFi services relative to total out&ows. Speci/cally, the
following regression is estimated.

DeFi Shareg,c,t =
∑

t ↑=tfreeze

ϑt → 1(Month = t)→ Treatg + µc + ϱt + ςg,c,t

where DeFi Shareg,c,t =
∑

i→g DeFi flowsi,g,c,t∑
i→g All flowsi,g,c,t

and it denotes the share of &ows sent to DeFi services for the
treatment or control group g in cohort c at month t. Each cohort represents a freeze date. The treated group
consists of the frozen addresses and their related counterparts. For every treated address, the control group is a
random sample of "$ addresses that received in&ows of at least )’$$ within the seven days prior to the freeze.
The /rst regression includes the cohort /xed e.ects, and the second adds event time /xed e.ects, and both are
weighted by total transaction value. The sample period is ’" months before and after the freeze date of each
cohort. Standard errors are clustered by asset seizure cohort and month.

Dep. Variable: DeFi Share

(’) (")

Treat → Post $."((↔↔↔ $."**↔↔↔
($.$+#+) ($.$++#)

Treat -$.’(,↔↔ -$.’(*↔
($.$+,+) ($.$-+#)

Post -$.$#(%
($.$###)

Cohort FE ↭ ↭
Event Time FE ↭
Observations ’$,’-+ ’$,’-+
Adjusted R2 $.%(’ $.%+"
Dep. Var. Mean $.##+ $.##+
Dep. Var. Std $.##* $.##*

Standard errors in parentheses
↑
p < 0.1, ↑↑ p < 0.05, ↑↑↑ p < 0.01

%+



Table ): In"ow to Tainted Deposit Addresses after the Binance and OKX Settlement

This table presents results from di.erence-in-di.erences regressions that test whether tainted in&ows to de-
posit addresses at Binance and OKX declined relative to other exchanges following their respective settlements.
Column (’) presents results for the Binance sample, and column (") presents results for the OKX sample. In each
sample, the treatment group consists of tainted deposit addresses at the focal exchange (Binance or OKX), and
the control group consists of all other tainted deposit addresses at other exchanges. Speci/cally, the following
regression is estimated.

log (1 + Total Inflow)i,e,t =ϑ → Postt → Treati,e + µi + ϱe + φt + ςi,e,t

where log (1 + Total Inflow)i,e,t is the log of one plus the tainted in&ow received by deposit address i on
exchange e in month t, and Postt equals one for months after November "$"# in the Binance sample and for
months after February "$"% in the OKX sample. All regressions include µi for deposit address /xed e.ects, ϱe
for exchange /xed e.ects, and φt for month /xed e.ects. Standard errors are clustered by deposit address and
month.

Dep. Variable: log (1 + Total Inflow)

(’) (")

Treat → Post -$.’-*↔↔ -’.%+(↔↔↔
($.$+,") ($.’%#)

Address FE ↭ ↭
Exchange FE ↭ ↭
Year-Month FE ↭ ↭
Sample Binance OKX

Observations #$-,$-- ",,-’*
Adjusted R2 $."", $.*"$
Dep. Var. Mean #.$,# *.-#,
Dep. Var. Std %.$,+ %.+",

Standard errors in parentheses
↑
p < 0.1, ↑↑ p < 0.05, ↑↑↑ p < 0.01

%-



Table *: Use of Round Number Deposits by Tainted Deposit Addresses

This table presents regression results examining the relationship between tainted deposits and the likelihood of
transactions being exact multiples of %$$ or ’$$$. Speci/cally, the following regression is estimated.

1(Divisible by %$$)i,e,t = ω+ ϑ0 → Taintedi + ϑ1 → Taintedi →Westerni,e + ϱe + φt + ςi,e,t

where d represents the deposit transaction value; 1(Divisible by %$$) is a binary indicator that takes a value of
’ if the transaction value is divisible by %$$; Taintedi is a binary indicator equal to one if deposit address i is
identi/ed as tainted; andWesterni,e is a binary indicator equal to one if deposit address i is on an exchange e
that is classi/ed as a Western exchange. All regressions control for exchange /xed e.ects (ϱe) and year-month
/xed e.ects (φt). Standard errors are clustered by exchange.

Dep. Variable: 1(Divisible by %$$) 1(Divisible by ’$$$)

(’) (") (#) (*)

Tainted $.’",*** $.’’’*** $.’"’*** $.’$****
($.$$-) ($.$’%) ($.$$+) ($.$’%)

Tainted →Western $.$"$ $.$’,
($.$’+) ($.$’()

Exchange FE ↭ ↭ ↭ ↭
Year-Month FE ↭ ↭ ↭ ↭
Observations --,%-$,,%+ --,%-$,,%+ --,%-$,,%+ --,%-$,,%+
Adjusted R2 $.$*$ $.$*$ $.$"- $.$"-

Standard errors in parentheses
↑
p < 0.1, ↑↑ p < 0.05, ↑↑↑ p < 0.01

%,
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